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ABSTRACT

THE RECONCILABILITY OF NON-EUCLIDEAN GEOMETRIES WITH
KANT’S PHILOSOPHY OF MATHEMATICS

COTELI, Can
M.A., The Department of Philosophy
Supervisor: Dr. Samet Bagge

September 2021, 95 pages

This thesis examines Kant’s philosophy of geometry, and the possibility of reconciling
non-Euclidean geometries with Kant’s philosophy of geometry. Kant believed that the
propositions of Euclidean geometry are necessary and universal. In addition to that, he
embraced the view that the character of space is Euclidean and he did not give any
credence to the possibility of determining the character of space by using another
geometrical structure. He also propounded the view that experience plays no positive role
in the acquisition of geometrical knowledge. In this thesis, the views of Helmholtz,
Poincaré and Reichenbach as to the positive role experience plays in the genesis of
geometry are elaborately discussed. In the light of their views, it is shown that different
environmental conditions have the potency to compel sentient beings like us to adopt non-

Euclidean geometries. These geometries, in turn, has a proper intuitive content in



contradistinction to Kant’s claim that they are only possible logically, not intuitively.
Under these considerations, this thesis shows that it is not possible to reconcile Kant’s
theory of geometry with non-Euclidean geometries even if undergoes appropriate
modifications offered by certain philosophers such as Strawson, who tried to reduce
the scope of Kant’s theory of geometry to visual space by arguing that visual space
cannot be non-Euclidean. For Strawson, the propositions of Euclidean geometry are
necessary and universal as was propounded by Kant, but its validity its limited to our
visual space. This thesis also shows the possibility of visualizing non-Euclidean
geometries by considering the views of abovementioned philosophers in

contradistinction to Strawson’s arguments in support of Kant’s theory of geometry.

Keywords: pure intuition, non-Euclidean geometry, visual space, Poincaré,
Reichenbach



Oz

THE RECONCILABILITY OF NON-EUCLIDEAN GEOMETRIES WITH
KANT’S PHILOSOPHY OF MATHEMATICS

COTELI, Can
Yiksek Lisans, Felsefe Bolimi

Tez Yoneticisi: Dr. Samet Bagge

Eylil 2021, 95 sayfa

Bu tez genel hatlar1 ile Kant’m geometri felsefesini ve Oklid-dis1 geometrilerin
Kant’in geometri felsefesi ile uzlastirilabilirliginin olanakliligini aragtirmaktadir. Kant
Oklid geometrisinin énermelerinin zorunlu ve evrensel oldugunu savunmustur. Buna
ek olarak uzaym karakterinin Oklidyen oldugunu ve uzayin geometrik karakterinin
farkli bir geometrik yap: kullanarak belirlenemeyecegi goriisiinii benimsemistir.
Kant’in ortaya attig1 bir bagka goriis ise geometrik bilgimizin kdkeninde deneyimin
asla bir pay1r olmadigidir. Geometrik bilgimizin kokeninde deneyimin pozitif bir
roliiniin olduguna iligkin Helmholtz, Poincaré ve Reichenbach tarafindan savunulan
gorlisler detayli bir sekilde tartigilmistir. Bu goriisler 1s18inda, farkli cevresel
kosullarin, bizim gibi canlilar1 farkli geometrik yapilar1 segmeye itebilecegi
gosterilmistir. Oklid-dis1 geometrilerin bunun sonucunda duyumsal bir igerige sahip

olabilecegi Kant’in bu tarz geometrik sistemlerin ancak mantiksal olarak miimkiin
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olabilecegi fakat duyumsal olarak miimkiin olamayacagi goriisiiniin aksine
gosterilmistir. Biitiin bunlar hesaba katildiginda, bu tez Kant’in geometri kuraminin
Oklid-dis1 geometriler ile uzlastirilamayacagi gosterilmistir. Strawson gibi Kant
sonrasi filozoflar, Kant’in geometri kuraminin gegerliligini gorsel uzay1 kapsayacak
sekilde modifiye etmeye ¢alismislardir. Strawson’a gore Oklidyen geometri Kant’in
savundugu gibi zorunlu ve evrenseldir, fakat gecerliligi gorsel uzay ile sinirlidir. Fakat
bu tezde gorsel uzaymmizin da Oklid-dis1 bir igerige sahip olabilecegi yine aym

filozoflarin goriisleri gbz oniinde tutularak tartisilmistir.

Anahtar Kelimeler: ar1 gorii, gorsel uzay, Oklid-dis1 geometir, Poincaré,
Reichenbach
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CHAPTER 1

INTRODUCTION

Mathematics, without doubt, is a fascinating topic to reflect upon for
philosophers. Since the times of antiquity, philosophers have always enquired into the
nature of this peculiar knowledge. What are mathematical entities? Do they exist? If
they do exist, then where and how do they exist? Also, how do we know mathematics?
From what source did we attain such knowledge? The early philosophers have been
burdened by these seemingly insurmountable ontological and epistemological
questions. In time, this burden became the peculiar fate of philosophers; being always
dissatisfied with partial accounts as to the reality and the origins of mathematical
knowledge, they always tried to advance further and improve their understanding of
these matters.

Perhaps what gave rise to the contentious views as regards the epistemological
and ontological status of mathematical knowledge is, without the slightest doubt, the
effect Euclid’s Elements brought about on philosophers. Even though Euclid’s
Elements, and along with it geometry and geometrical reasoning, became the
paradigmatic source of apodictic certainty, necessity and universality. The origin of
such necessity and universality daunted philosophers for centuries. Many philosophers
tried to account for the origins of geometry according to their ideologies. Empiricists
and rationalists offered their solutions, but not before Immanuel Kant has appeared on
the scene, the disputes have been successfully settled.
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Kant settled the disputes by successfully synthesizing empiricism and
rationalism, and offered a fresh philosophical ground for Euclidean geometry. Owing
to Kant, Euclidean geometry gained its secure and unshakable place as a true science
of space. For a very long time, Kant’s philosophy of geometry reigned over Europe; it
seemed, after a very long time, that Euclidean geometry was successfully and
philosophically grounded.

19" and 20" century witnessed revolutionary thoughts that radically altered the
way mathematics and physics are understood. The discovery of Non-Euclidean
geometries, and the discovery of the special and general theories of relativity and
quantum mechanics in the field of physics are, without doubt, the most triumphant
discoveries in the history of intellectual thought, the importance and value of which
can be compared to the discoveries of The Elements and Newton’s laws of motion and
universal gravitation. The discovery of Non-Euclidean geometries came into a
clashing course with our understanding of geometry and of course with Kant’s
philosophy of mathematics, because for a considerable long period of time, no one has
doubted that the space could be other than the way it was described by Euclid’s
Elements. But Non-Euclidean geometries have granted the possibility that space could
actually be otherwise than the way it was described by Euclidean geometry. Perhaps
the final blow to Kant’s philosophy of mathematics came from Einstein’s discovery of
special and general relativity, because Einstein successfully made use of Non-
Euclidean geometry to account for spatial relations between objects, which otherwise
could not simply be modelled by Euclidean geometry. This, in effect, proved that the
non-Euclidean geometries are not just fantasies of mathematicians.

The subject of this thesis is to investigate whether or not non-Euclidean
geometries can be reconciled with Kant’s philosophy of mathematics. Even though it
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was first assumed by certain philosophers and scientists that these discoveries both in
mathematics and physics rendered Kant’s theory of geometry and space obsolete, there
appeared, in the subsequent chapters in the history of philosophy, some philosophers
who tried to rescue Kant’s philosophy by showing that his philosophy can endure these
death-blows if appropriate modifications are made in his system. This thesis will begin
by a concise exhibition of the historical roots of geometry and then it will make a brief
historical survey with regard to the philosophical reflections upon geometry up until
Kant has appeared on the scene. In order to obtain a thorough understanding of Kant’s
philosophy, a brief information as to the grounds which prepared the motivation for
Kant to come up with his own thesis must be provided. In the second chapter, a
prolonged and more detailed exposition of Kant’s philosophy of mathematics, along
with his views as regards space and the exact relation between space and geometry
will be given. The third chapter will focus on the intellectual climate after Kant, and
on the discovery of Non-Euclidean geometries. And lastly, in the final chapter, the
impact of Non-Euclidean geometries on Kant’s philosophy of mathematics, in the light
of numerous interpretations from variety of philosophers, such as Poincaré and
Reichenbach, is going to be discussed.

In conclusion, my thesis aims to show that no modification can save Kant’s
theory of geometry from its demise. First of all, it will be shown that the space could
be modelled by non-Euclidean geometries in contradistinction to Kant’s views. This
brings us to the conclusion that the Euclidean geometry is not the only geometry that
can be used in describing the character of space. Second of all, it will be shown that
the intuitive comprehension of non-Euclidean geometries, along with its rigorous
logical comprehension, is possible. Kant and his followers believed that it is
impossible to make sense of non-Euclidean geometries. My thesis is going to tackle
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the issue of the possibility of the intuitive plausibility of non-Euclidean geometries,
and it is going to provide an arena in which conflicting views of the opposing parties

are going to battle each other.



CHAPTER 2

A BRIEF HISTORICAL SURVEY

Geometry, as a practice, owes its origins to Egyptians and Babylonians, who
used it as an instrument for the measurement and determination of magnitudes. The
approach of Egyptians and Babylonian practitioners to geometry was practical; they
used it in architecture, surveying, and sky observations and in many more practical
fields. The annual rising of the Nile River, for example, necessitated the incorporation
of geometry and engineering; for without the aid of geometry, it would have been
difficult, if not impossible, for the Egyptian people to cope with the consequences of
this yearly flood. Proclus gave a brief comment as to the attitude of the Egyptian
practitioners towards geometry with his following words:

According to most accounts, geometry was first discovered among the

Egyptians, taking its origin from the measurement of areas. For, they found it

necessary by reason of the flooding of the Nile, which wiped out everybody’s

proper boundaries. (Proclus, 1970, p. 52)

This, however, does not mean that the minds of the Egyptian and Babylonian
practitioners of geometry were not occupied with certain geometrical problems. It is
well known today that these ancient practitioners contributed a lot to the field of
geometry by discovering certain geometric relations. Egyptians, for example,

discovered how to calculate the area of a given triangle and circle (Schreiber, 2015).

Various areas and volumes were calculated, but this, again, was carried out with



respect to the practical engineering problems that had needed to be solved back then
(Schreiber, 2015).

The transition from Egyptian and Babylonian geometry to ancient Greek
geometry is remarkable in the sense that in the latter, geometry was gradually stripped
off of its empirical character and vulgar origins, and it gained a new rigorous and
scientific outlook. For Greek philosophers, it was as though geometry, as a practice,
was carried out only for the sake of the spirit of geometry and nothing else. The
comment provided above that belongs to Proclus continues as follows:

Nor is there anything surprising in that discovery both of this and of the other

sciences should have had its origin in a practical need, since everything which

is in process of becoming progresses from the imperfect to the perfect.

(Proclus, 1970, p. 52)

Schreiber states that it was with Pythagoras that geometry had been started to be
practiced for its own sake; that is, completely detached from the practical affairs
(Schreiber, 2015). Also later on, we see with Plato, a distinction between the geometry
practiced by merchants and builders, and that practiced by philosophers. (Plato, 1997).

Around 300 B.C. Euclid appeared on the scene. Without doubt, one of the most
brilliant and remarkable achievements in the history of the intellectual thought is
Elements of Geometry. This monumental edifice was compiled by the great ancient
Greek mathematician, Euclid. The compilation was remarkable in that Euclid put
together the findings of Babylonian, Egyptian and Greek geometricians and organized
them into a single and consistent system. What is new in the Greek system is the
axiomatic approach so as to establish a firm theory of space. The system is composed
of axioms, postulates and definitions, each of which is then used to prove certain

propositions. Axioms actually go by the name of common principles. These principles

are nothing more than the principles of logic which are common to all scientific



disciplines unlike postulates, which are bodies of premises taken to be self-evidently
true and specific to the field of geometry. Postulates are special in that they function
as the determination of or a set of procedures for constructing a well-defined geometric
figure. Through the postulates, one obtains information as to the most elementary
figures that can be constructed in geometry. Propositions are generally stated in natural
languages; they function as statements which are to be shown through certain
constructions and then be proven accordingly. The Elements is the prototype of a first
deductive system in which theorems can be deduced by virtue of the proper utilization
of the axioms, postulates and definitions. One of the most remarkable aspects of
Euclid’s system is that the soundness of the theorems need not go through validation
which involves processes of measurement and experimentation; these theorems are
rather shown to be true with an unprecedented rigor and assuredness through
deduction.

The Elements of Geometry has become the paradigmatic example of the
mathematical method and an axiomatic system, and along with its influential spread
across centuries, philosophical and mathematical problems associated with it have
begun to surface. Philosophers and mathematicians did not refrain themselves from
reflecting upon the nature of geometry and geometric reasoning. Daunted and
perplexed, perhaps by the compelling force with which the propositions of Euclidean
geometry impose themselves upon the human mind, many of the philosophers
naturally questioned the origins of the geometrical knowledge and from whence it
derives its necessity and certainty. What was, after all, the proper subject-matter of
geometry? Did it study the visible shapes and figurative properties of concrete objects?
Did it study the spatial relations between objects? Did it study the space itself? Or was
it about something more abstract and ethereal, as perhaps had been thought by Plato?
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Plato was the forerunner of the idea that the geometrical objects were not to be
confused with sensible objects (Plato, 1968, 529c-530a). A line, for example, as
defined by the Elements, is that which lies evenly with its points (Heiberg, 2007, p. 6).
But from whence we could know that such a property belongs to the concept of line if
the objects of sensation are not able to instantiate that concept accordingly? This shows
that he was aware of the difficulty of reconciling the abstract entities of geometry with
their sensible counterparts. Thus, in seeking the true origins of geometry, Plato had
recourse to the existence of the world of forms, eternal and unchanging, which is
revealed to us through rational contemplation. Plato had a point, for Euclid’s Elements
seem to have been unrelated with the study of the practical problems related with the
measurement of concrete objects. The unrelatedness of Euclid’s Elements with the
measurement of concrete objects was exemplified by Stephen Barker, a philosopher
who was keenly interested in these issues. In his book, Philosophy of Mathematics, he
claims that a straight line cannot be drawn between two points on the surface of the
earth, for there are various factors which have the potential to render the activity of
drawing a straight between two points almost impossible. (Barker, 1964) So whatever
the subject matter of The Elements was, it surely was not concrete figures and their
measurable properties. This is why Plato sought a refuge to the divine and eternal
forms and deemed geometry as an extra-mundane endeavor which transcends the
world seen, heard and touched.

Plato’s position is characterized today as realism about mathematical entities
which also goes by the name of Platonism. This, however, is not the only interpretive
solution to Euclid’s Elements. The solution offered by Plato comes with a burden of
ontological commitment; a commitment to the existence of a realm which transcends
this world and is forever hidden from our perceptual faculty. This ontological
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commitment, which is in a sharp contrast with the core tenets of empiricism, prepared
the ground for the disputes as regards the origins of geometrical knowledge and these
disputes have not been settled even up to the present day.

Empiricists, such as John Locke, George Berkeley and David Hume, were not
eager to dispense with the sensible aspect of geometrical reasoning; geometry, after
all, is using figures, such as points, lines, surfaces, etc. with which we are closely
acquainted in our everyday experience. So it is not a daring assumption that we come
to know these objects of geometry through our experience.

Berkeley found the abstract geometrical entities as inconceivable, or
unimaginable. To give an example, no particular line seems to be able to instantiate
the concept of a straight line properly as was defined by Euclid, for neither are we able
to imagine a breadthless line as it was defined within the Elements, nor we are able to
see and inspect any in our experience. In Berkeley’s words: “Extension without
breadth i.e., invisible, intangible length is not conceivable tis a mistake we are led into
by the Doctrine of Abstraction.” (Berkeley, 2019, 365a). Berkeley concluded that the
proper subject matter of geometry is not “extension in abstract” (Jesseph, 2009). The
object of geometry, for Berkeley, is “the sensible extension, composed of sensible
minima.” (Brook, 2012, p. 2)

Another seemingly insurmountable problem was related with the proof-
procedures in which the particular objects are used as universals that quantify over all
the others. After all, for Berkeley, the subject matter of geometry is the particular
figures constructed on a canvas or imagined. How is it, then, that @ particular geometric
figure, such as a constructed triangle, or a line, is able to convey general information
as to all other triangles, if the object of geometry is nothing other than sensible
extension? After all, no two triangles could be assuredly held to be equal in terms of
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their magnitude. This point is also stressed by Hume. David Hume was troubled by
the granular and irregular nature of apparent bodies, for no body that we measure is
able to yield an exact information as to its length, area or volume. He said “appearance
can never afford us any security, when we examine, the prodigious minuteness of
which nature is susceptible.” (Hume, 1960, p.70). This would mean that, under the
empiricist view, no two triangles could have been expected to possess exactly the same
properties. A triangle, for example, is constructed in concreto when one attempts to
prove a given proposition about all triangles. That triangle, then, serves as a universal
in that every property that is discovered by virtue of an appeal to that particular triangle
is also valid for all the other triangles. This seemed to be an oxymoron for empiricists
such as Berkeley, for how is it that the universal is assumed by a mere inspection of
the particular? The universality of the propositions of geometry must then, at best, be
comparatively universal, a type of universality which is achieved through induction.
But this was totally at odds with the deductive structure of Euclid’s Elements. This is
why Berkeley thought “that propositions and demonstrations in geometry might be
universal, though they who make them never think of abstract general ideas of
triangles or circles.” (Berkeley, 2020, p. 209).

Rationalists, on the other hand, seemed to be more content with Platonism
compared to the empiricists. Rationalists such as Leibniz and Descartes, believed that
it is the intellect which is able to grasp the essence of these propositions and confer to
those propositions strict necessity and universality. So rationalists accused empiricists
for “explaining away” the apodictic certainty of the propositions of geometry and
treating the totality of the system as a mere contingency. Descartes, for example,

believed that the propositions of geometry are comprehended clearly and distinctly in
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the natural light of reason which made any doubt cast on their soundness irrelevant
and preposterous.

Descartes held that “the nature of a triangle appears utterly evident”
(Descartes, 2008, p. 50). In his mind, he continued, he can determine every property
that follows from the essence of the concept of the triangle, clearly and distinctly.
Descartes also believed that the presence of a triangle in his mind is not dependent at
all to any particular triangle that he has come to know through his senses. One of the
reasons that he put forward to support this thesis is that there exists in his mind
“innumerable other shapes that it is impossible to suspect ever reached me via the
senses.” (Descartes, 2008, p. 46) This means that we can conceive of, clearly and
distinctly, a shape which we need not have been confronted prior to our contemplation
of it in our experience. This, on the part of rationalists, is “explaining away” the
connection between the geometry of sensibles and the geometry that is purely
contemplated, for Descartes rigidly held the view that the idea of a triangle must not
have arisen in him through his sense organs. Descartes, in his Dioptrics, developed a
theory which he called natural geometry, to try to account for how the perceived
geometrical character of objects and their relations are also innate and has been all
along existed in the perceiver prior to one’s exposure to the world of senses. His thesis
later confronted with series of criticisms raised by Berkeley and others.

Even though rationalism is not necessarily affiliated with Platonism, it
nevertheless remained loyal to the core tenets of Platonic thought that the intellect is
somehow able to comprehend the propositions of geometry independently of the
intervention of our faculty of sensibility. And this is exactly why the propositions of
geometry must be universal and necessary, for the comprehension of the propositions
begins from within and not bound to the knowledge attained from without, which is
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contingent and fallible. Rationalists were well aware of the fact that no empirical
proposition can impose itself upon the mind with such necessity and universality as
that of geometry.

The apparent dichotomy as regards the possible origins of geometry was on the
scene. The contention between the members of the opposing school of ideologies is
obvious. Both parties had their own reason to insist upon their view, and posed certain
problems related with the views of the opposing side. It seems that rationalists were
able to account for the apodictic certainty of the propositions of geometry by locating
the seat of the geometrical knowledge within the pure intellect. But this in turn made
the applicability of geometry to nature problematic and left other problems, such as
the conceivability of the abstract figures in imagination and the universality of the
propositions unsettled. Empiricists, on the other hand, located the true origins of
geometry within sense perception at the expense of giving up on certainty and
necessity of its propositions.

Perhaps the most outstanding turn in the philosophy of geometry took place
with Immanuel Kant. Kant was well aware of the problems of both schools of thought
and his transcendental idealism can be crudely described as a synthesis of empirical
and rational cognition. Kant, as pointed out by Henry Allison, accused empiricists for
sensitivizing the intellectual concepts that belong to the field of geometry, and accused
rationalists for intellectualizing appearances what properly belongs to sensibility
(Allison, 2015). Owing to Kant’s outstanding work on human understanding and the
elaborate picture that he provided as to how the co-operative work between the
understanding and sensibility take place to account for condition of the possibility of

sciences in general, geometry reclaimed and secured its indisputable proper place
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along with other sciences, at least for a while. With Kant, geometry became a body of

synthetic a-priori truths; which are apodictically certain, necessary and universal.
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CHAPTER 3

KANT’S PHILOSOPHY OF MATHEMATICS

As was laid down earlier in the previous chapter, Kant’s genius lies in his
successful synthesis of rationalism and empiricism. Kant did not agree with empiricist
philosophers with regard to the origin of our mathematical knowledge, nor did he
agree with rationalists as to the content of mathematics. He was well aware of the
problems associated with both schools of thought.

The secure progress of physics and geometry was put into danger by the
skepticism raised by radical empiricists such as David Hume. Kant, notwithstanding
the skepticism of Hume, was assured by the secure progression of geometry and
physics because they are not as frequently renewed and “brought to a stop as they near
their goal” (Kant, 2007, Bvii/Bviii). Kant witnessed the coming and going of many
metaphysical systems, each of which was in contradiction with the other and strove in
vain to claim an eminent place. But mathematics, he observed, never halted its
progress and advanced without any breaks in the history. So mathematics is not just a
random-groping, as is metaphysics, and the aim of the Critique is to prove that the
ground upon which mathematics travel is secure.

Kant’s solution to rescuing geometry from the skeptical assaults of empiricism
and the dogmatic tenets of rationalism was his introduction of the philosophical system
which goes by the name of Transcendental Idealism. The cardinal tenet of

transcendental idealism is that the objects must conform to the forms of our intuition;
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which Kant deemed as the pure intuition of space and pure intuition of time, and then
must be determined according to the pure concepts of the understanding. Intuition is
a term which is muddled with conflicting interpretations throughout the history of
philosophy. The original German term is ‘anschauung’; which means ‘to behold’, or,
‘to grasp directly or immediately’. Space and time, for Kant, are intuitions as to which
we have an immediate direct access. Kant believed that our intuition of space and time
are a priorit frameworks (of space and time) which we impose upon experience and
which act as the condition of the possibility of experiencing objects in the first place.
Those frameworks are conditio sine qua non? for experience, that is, by virtue of them
the experience becomes possible.  Not only must the objects conform to this pure
framework, but also to the concepts of the understanding which are not derived from
experience. Our knowledge, for Kant, cannot be obtained if we rest on intuitions
alone, they must also be determined according to the a-priori concepts of the
understanding. Through the former, the objects are given to us, through the latter, they
are thought (Kant, 2007, B74/B75). To display the collaborative work of our pure
forms of sensibility and the concepts of the understanding in producing knowledge,
Kant famously asserted that “thoughts without content are empty, and intuitions
without concepts are blind” (Kant, 2007, A51/A52). The content is provided to us by
our intuitions, and understanding acts on these intuitions and determines them
accordingly, by subsuming them under concepts and relating them to one another in a

possible judgment.

L A-priori, in Latin, means prior to any given experience. A proposition is knowable a priori if it can be
known without experience of the specific course of events in the actual world. (The Oxford Dictionary
of Philosophy, 2008). A detailed exposition is going to be given in the subsequent section.

2 |In Latin, it means a necessary condition for something to exist or happen (Oxford Dictionary of
Philosophy, 2008)
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This revolutionary thought, that the objects must conform to our cognition,
completely turned upside down the philosophical method which had been
implemented before Kant. Before Kant, it has been assumed that all our knowledge
must conform to objects, but Kant, by turning upside down the traditional conception,
required that the objects now must conform to our cognition. The emphasis given to
the experiencing subject than to the experienced object has been held to be analogous
to the revolution brought about by Copernicus, where the astronomy has been turned
“inside-out” by the replacement of the position of our Earth with the sun within his
heliocentric system. The revolution brought about by Kant, since then, has gone by the
name of the Copernican revolution in the history of philosophy.

Transcendental idealism enabled Kant to refrain from believing in a mind
independent world in which mathematical entities reside. Going back to Plato,
mathematical objects had been believed to be residing in a non-spatio temporal and
non-mental realm, completely resilient to all kinds of alteration and change. With
transcendental idealism, Kant successfully avoided an ontological commitment to the
mind-independence of mathematical objects. The origin of mathematical knowledge
was now located in the pure intuition of space and time. It is by virtue of the peculiar
and subjective constitution of our minds that we are able to do mathematics; and the
construction of every mathematical object takes place in it in a-priori fashion.

Transcendental idealism also enabled Kant to relate the mathematical
knowledge to our sensibility without depriving the propositions of it from their
apodictic certainty, necessity and universality. It has been commonly held before Kant
that any kind of knowledge that has its seat on sensibility is contingent and is gained
from experience. But with Kant, this sensible faculty was no longer related only with
the mode of representation by virtue of which the qualitative properties, such as the
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color, sound, etc., of the objects of senses are given to us. It is true that Kant stated
that “the mode in which we are affected by objects, is entitled sensibility” (Kant, 2007,
A19/A20), but the distinction that Kant had drawn between the form and the matter of
our representations enabled him to differentiate between pure intuitions and empirical
intuitions. The matter of our representations (viz. their qualitative properties such as
their color, sound, etc.) are that which we receive from our sense organs, which alone
yields us sensations. The form, on the other hand, is the framework in which the
manifold of sensations is organized and ordered. These frameworks are space and
time, and they are forms of intuition. The pure form of sensibility also goes by the
name of pure intuition. What remains when we take away from all the content of our
representation of a body; such as its color, hardness and other sensible properties, is
pure extension, which belongs to pure intuition. (Kant, 2007, A20/A21)

Since he located the true origin of mathematics in our sensibility, he did not
agree with rationalists, such as Leibniz and Wolff® with regard to the content of
geometry, for neither the sole inspection of any concept nor their relations carried out
in chain of syllogisms in purely in a logical manner was capable displaying the peculiar
nature of mathematical knowledge. Kant used the proof-procedures in Euclid’s
Elements in setting up a counter-example to the methodology used by Wolff to display
that mathematics required more than setting concepts into relations. His break with
Wolffian tradition enabled Kant to relate our mathematical knowledge to our pure
intuition of space. This is why Kant waged a war against analytical treatment of the

truths of mathematics which deprived mathematics from its sensible content, which,

3 Christian Wolff, a rationalist philosopher who had a huge impact on pre-critical Kant, held that
mathematical method consists of “chain of syllogisms guided that proceed from axioms and
definitions to theorems” (Frketich, 2019).
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for Kant, in its pure form, space and time. At the heart of his rejection there lies the
connection between mathematics, and space and time, and as a proto-intuitionist, Kant
was perhaps the first philosopher to tackle the origin and content of our mathematical
knowledge to space and time.

In conclusion, the proper subject matter of geometry is nothing but pure figures
that are either realized by a process akin to abstraction* as Kant have put it, or
constructed in the pure intuition. So the propositions of geometry are neither synthetic
a-posteriori nor analytic a-priori truths. The former is related to the empirical and
contingent truths, whereas latter to the truths of reason, which are attained by virtue of
pure reason alone, detached from our faculty of sensibility. They are synthetic a-priori
truths, a novel category introduced by Kant to philosophy.

In order to make a thorough understanding of what synthetic a-priori means,
the distinction between a-priori/a-posteriori and analytic/synthetic judgments must be
elaborately discussed. The next sections are devoted to the elaboration of these two

critical concepts.

4 By abstraction, | meant the process of taking away all that belongs to the content of the given
representation. When everything as regards its content is abstracted from a representation, what
remains is its form, or extension (Kant, 1929, B35). So, a triangularity of a triangle can either be realized
by abstracting all the relevant features from a given empirical intuition, or it can be purely constructed
in the imagination. It does not matter, for Kant, whether the form is realized in the sensible object or
in the imagination, for the determinative form common in both representations is their spatial form,
which is known a-priori. More on this will be discussed in the subsequent sections.
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3.1. The Distinction between A-priori and A-posteriori

Kant stated in Preface to the First Edition of his Critique of Pure Reason that
“the subject of the inquiry is the kindred question, how much we can hope to achieve
by pure reason, when all the material and assistance of experience is taken away ”
(Kant, 2007, Axiv/Axv). As it is roughly discussed in the preceding sections, Kant
believed that the lawful aspect of reality is a product of our faculties of understanding
and sensibility, and it results from the collaborative work of our faculties of sensibility
and understanding.

A-priori, in general means the kind of knowledge that is independent of our
experience. A-posteriori means the kind of knowledge that is obtained through
experience. Two essential properties of a-priori judgments are necessity and
universality; all a-priori judgments are necessary and universal. The necessary
judgment is that the negation of which does not make any sense and therefore not
possible. Similarly, if a judgment is universal, it means that no exception to that can
be provided. These two criteria go hand in hand with one another and, for Kant, are
not separable. A-posteriori judgments, on the other hand, are contingent and
comparatively universal. Contingent judgments are that the negation of which are
possible both in thought and in reality. Comparative universality, on the other hand, is
the criterion which enables the possibility of the occurrence of certain exceptions to
those judgments. Comparative universality can only be achieved through induction,
but a strict universality through deduction.

Certain propositions that belong to natural sciences can only be justified on
contingent grounds and can only achieve a comparative universality. The proposition,
our solar system has eight planets, is a contingent proposition. It is contingent because
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there remains no reason not to think of the possibility of our solar system having more
or less planets. Who knows what is going to happen to our solar system and the planets
in it in the future? This is also why it can be justified inductively; we can only
assumethat the future is going to resemble the past and thereby conclude that our solar
system is going to have the number of planets that it currently has in the future. But
we cannot make this statement with hundred percent certainty.

Mathematics, on the other hand, is considered to be an a priori science by Kant.
An elaborate discussion as to why mathematics is a-priori will be given in the

subsequent sub-sections of this chapter.

3.2. The Distinction between Analytic and Synthetic Judgments

Perhaps what needs to be laboriously scrutinized, so as to achieve a thorough
understanding of the nature of the synthetic a-priori propositions, is the famous
distinction that Kant made between analytic and synthetic judgments. There are two
criteria, which can be indirectly inferred from Kant, that exist for distinguishing
analytic judgments from synthetic judgments.

The first criterion can be entitled as containment criterion. All judgments
come in the standard subject-predicate form. If the predicate is necessarily thought, or
in other words, contained in the subject, then the judgment is entitled as analytic. This
containment relation between the predicate and the subject is the identity relation that
takes place between them. In other words, the predicate becomes nothing but a
restatement of the subject term through concepts that are already contained within
itself. These concepts, through which the subject is rephrased, are concepts that
collectively constitute the subject. If we imagine a taxonomy in which our subject has
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a definite place among other taxa, then the concepts that belong to the predicate belong
to a higher-level in the same conceptual hierarchy, that is to say, they represent a more
general taxa under which the subject becomes a species. Consider the following
example “all bachelors are unmarried men”. Let’s denote the concepts by using
brackets, so <bachelor> refers to the concept of bachelor. It is clear that in the
taxonomy of concepts, <bachelor>and <men> belong to a more general (higher) level.
So the formation of <bachelor> necessarily requires first the formation of <men> and
<unmarried>. Only with the combination of those two concepts, <bachelor> can be
formed.

In addition, in the synthetic judgments, the predicate is not analytically
contained within the subject; it is only connected with the subject. This indicates that
no matter how much the subject is analyzed into its constituent concepts, the predicate
which is connected to it can never be found within it; the predicate constitutes wholly
and addition to the given subject. The example “the sky is blue” is an instance of a
synthetic judgment; the predicate “is blue” is connected to the concept “sky” which
is not originally thought within it. In this example, the connection between the subject
and the predicate is learned through experience. It is the experience which forms the
ground of such connection. We learned that the sky is blue through observation.

The second criterion is the reducibility of judgments to the principle of non-
contradiction. In fact, the second criterion is just a way to be assured of the first
criterion through subjecting the containment relation to the principle of non-
contradiction and see whether the containment relation is analytic or synthetic.
Analytical judgments can be known through the principle of non-contradiction. This
implies that in analytic judgments, the denial of the predicate and the affirmation of
the subject always yield a contradiction. This makes sense; for the subject is
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necessarily constituted through the concepts that belong to the predicate in analytic
judgments, so the negation of the predicate amounts to the negation of the concepts
that necessarily and collectively constitute the subject. This inevitably yields a
contradiction. But the same principle; the principle of non-contradiction, is not the sole
criterion through which the knowledge is attained in the synthetic judgments; the
comprehension of synthetic judgments requires more than the principle of non-
contradiction. The same example, “the sky is blue” can be given to explain why it is
the case. The predicate “is blue” does not stand in a necessary connection with the
subject “sky”. This is why, the negation of the predicate does not provide any cue for
anyone who is not acquainted with the connection between the predicate and the
subject in one’s experience; it is merely a contingent truth that the sky is blue. The sky
could have been red as well. The truth-value of this statement depends on a variety of
contingent conditions.

All analytical judgments are explicative, that is, unable to add anything new to
our knowledge of the subject through the predicates attached to it. Because, as it was
discussed above, all the concepts inherent in the predicate are already contained within
the subject. But synthetic judgments, in contrast to analytic judgments, are ampliative.
This means that they expand our knowledge and avail to us new connections.

In conclusion, the distinction between a-priori/a-posteriori concerns the origin
of our knowledge. The distinction between analytic/synthetic, on the other hand,
concerns the content of our knowledge. A-priori judgments have their origin in the
mind. Kant clearly stated that “we can know a-priori of things only what we ourselves
have put into them” (Kant, 2007, Bxviii/Bxix). It has already been discussed in the
previous sections that Kant resorted to the faculty of our pure intuition to locate the
true origin of mathematical knowledge. So mathematical judgments are a-priori; they
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are not derived from experience, they carry with them a strict necessity and
universality which are not to be found in the empirical judgments. But what about the
content of mathematical knowledge? As it was briefly discussed at the outset of this
chapter, he was not sided with rationalists as to the content of mathematical
knowledge; he did not accept the view that the propositions of geometry, for example,
could be discovered through discursion, that is to say, through conceptual analysis. So
the propositions of mathematics must be synthetic.

Thus the indispensable conclusion that is to be drawn from it is the following:
mathematics is synthetic a-priori. But what exactly does it mean for mathematical
propositions to be synthetic a-priori? The following section is mainly focused on this

particular question.

3.3. Mathematics as a Synthetic A-Priori Science

Mathematical judgments are both a-priori and synthetic. They provide us with
ample examples of a-priori judgments, for they are necessary and universal, that is to
say, the negation of which are not possible and there occurs no exception to them.
According to Kant, the proposition, for instance, the sum of the interior angles of a
triangle is equal to the sum of two right angles, is a necessary and universal
proposition. It is necessary, for the negation of it cannot be comprehended and
therefore not possible, it is universal, for there exists no triangle, the sum of its interior
angles of which are larger than, or smaller than the sum of two right angles.

Mathematical judgments are also synthetic; this means that no matter how hard
one analyzes, for example, his concept of triangle, one can never find that its interior
angles add up to two right angles. The mathematician needs to go beyond the given
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concept and make some constructions to be able to see that the concept of triangle can
be predicated of the given property. Kant explained this procedure followed by the
geometer as follows:

He at once begins by constructing a triangle. Since he knows that the sum of
two right angles is exactly equal to the sum of all adjacent angles which can be
constructed from a single point on a straight line, he prolongs one side of his
triangle and obtains two adjacent angles, which together are equal to two right
angles. He then divides the external angle by drawing a line parallel to the
opposite side of the triangle, and observes that he has thus obtained external
adjacent angle which is equal to an internal angle. In this fashion, through a
chain of inferences guided by throughout by pure intuition he arrives at a fully
evident and universally valid solution of the problem. (Kant, 2007,
A716/B744)

A E

Figure 1

The logical analysis of the concepts cannot account for the connection between
the subject and the predicate of the given proposition; the relation between the subject
and the predicate can only be discovered through chain of inferences guided by pure
intuition. The constructions are necessary for one to make the necessary synthesis
between the subject and the predicate and to connect them.

This makes mathematics, a true science, for every proposition is achieved
through a synthesis guided by pure intuition which expands our knowledge.

Mathematics is more than explicating and making clear what has already been given
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to us; had it been the case, it would have been nothing other than a gigantic tautology
in which nothing new is said.

But what is this construction in pure intuition? Why does geometry require
such an act? The answers to these questions are immediately tied with the relation
between our intuition of space, time and mathematical practice. Indeed; the very
possibility of the knowledge of mathematics is dependent upon the faculty of
sensibility. That being said, two important questions need to be addressed at this point;
first, how are synthetic a-priori judgments possible? And second, what exactly does
construction in pure intuition mean? Our inquiry is going to begin with the former

question.

3.4. Forms of Sensibility: Pure Intuition of Space and Time

Kant believed that we have forms of sensibility (pure intuition of space and
time) by virtue of which the various properties of appearances are determined
completely a-priori. “In space”, Kant states, “...their shape, magnitude and relation to
one another are determined.” (Kant, 2007, A23). Every object of experience must be
located in space and time necessarily. There simply exists no object which do not
appear as not belonging to a particular space or time. So space and time are responsible
from ordering and organizing our manifold of sensations; therewith, the various spatio-
temporal relations among appearances are possible only in virtue of this pure faculty
of sensibility.

Kant aimed to show, in The Critique of Pure Reason, that the necessity and the
universality of the propositions of geometry, and the very possibility of the
construction of the concepts of geometry, strictly follows from the a-priority of our
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pure intuition of space. Geometry “is a science which determines the properties of
space synthetically, and yet a-priori” (Kant, 2007, B40/B41). To do that, Kant adopted
the synthetic method in The Critique of Pure Reason. Synthetic method, as utilized by
Kant, is that which derives the possibility of the necessity ®and universality of the
judgments of a particular domain of knowledge, such as geometry, from the faculties
of the mind which are a-priori. So it is a progressive method® in which one starts from
the original resources of cognition (such as from pure intuitions and understanding)
towards a particular domain of knowledge through the synthesis of the elements that
belong to that cognition. This is why he claims that the modal status of the knowledge
of Euclidean geometry is dependent upon that of our pure intuition of space. The
progression from our pure forms of intuition to the necessity and universality of the
geometrical knowledge is in accordance with the synthetic method; for without this
pure intuition of space, it is not possible to account for from whence the necessity and
universality of the propositions of geometry arise. This is supported by Kant stated
that “the apodictic certainty of all geometrical propositions, and the possibility of their
a-priori construction, is grounded in this a-priori necessity of space.” (Kant, 2007,

B39)

5> The modal ambiguity may strike the reader here. But the reader must not forget that Kant was mainly
interested in the conditions of the possibility of knowledge in general. So, what must be shown first is
the possibility of having a capacity or a faculty by virtue of which the necessity and the apodictic
certainty of the propositions of geometry can be sown.

81n Prolegomena, however, Kant uses the regressive argument to show that there must be an a-priori
source of cognition of space given that geometry is a science which demonstrates its results
necessarily and a-priorily through constructions. The regressive method goes by the name of the
analytic method. Kant can be accused of using the analytic method to justify the a-priority of our
intuition of space and thereby committing a fallacy by reasoning in a vicious circle, for, in The Critique
of Pure Reason, he originally demonstrated the a-priority of our intuition of space as a necessary
condition for the science of geometry in the first place. In the literature, this argument goes by the
name of ‘Argument from Geometry’. A detailed analysis of this methodological distinction and how
should Kant’s argument from geometry be correctly treated can be found in Lisa Shabel’s article Kant’s
Argument from Geometry.
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The pure frameworks of space and time, postulated in The Transcendental
Aesthetic, account both for the possibility of geometry as a synthetic a-priori science,
and the possibility of the necessary applicability of that science to the objects of senses.
By this reason, the postulation of an a-priori framework enabled Kant to tackle the
long unsettled question of how mathematics can be applied to the nature. The proper
mathematization of objects of senses is said to be accomplished with respect to these
forms of intuition. The geometric determination of the relations among appearances,
and the determination of their figurative properties (e.g., their geometric form) is said
to be accomplished in the pure intuition of space and time. What follows from this is
that geometry find its transcendental applicability to the objects of senses. In brief,
Kant offered a “transcendental explanation of the mathematical nature of the world”
(Cantu, 2018), and he achieved this by locating the seat of the possibility of the
geometrization of the nature within the subjective constitution of the human mind, that
IS, In pure intuitions.

The reader, at this point, must be mindful of the modern distinction between
pure geometry and applied geometry and how it relates to Kant’s theory of geometry
even though this distinction has not been explicitly stated within the works of Kant
and can only be inferred indirectly. Had Kant limited his discussions solely to the
possibility of the science of geometry and its a-priori and synthetic nature, the
application of geometry to experience, and therefore its objective validity (reality)
would have begged and explanation. Consider the following passage:

Through the determination of pure intuition we can acquire a-priori knowledge

of objects, as in mathematics, but only in regard to their form, as appearances;

whether there can be things which must be intuited in this form, is still left
undecided. Mathematical concepts are not, therefore, by themselves
knowledge, except on the supposition that there are things which allow of being
presented to us only in accordance with the form of that sensible intuition.

(Kant, 2007, B147)
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In brief, Geometry determines space both a-priori and synthetically. The determination
is a-priori, for the intuition upon which the science of geometry is predicated is a-
priori. It is synthetic, for the propositions of geometry, as was shown in the previous
chapter, can only be obtained by going beyond the given concepts, and this is achieved
through certain procedures involving constructions’ that takes place in a-priori
intuition.

Having displayed the tripartite modal relation between geometry and space and
spatial perception, what needs to be shown is the transcendental ideality of space as
being a pure form of sensibility, for only if the space is transcendentally ideal, the
attainment of synthetic a-priori knowledge with regard to it becomes possible.

The philosophy of space before the time of Kant had long been occupied by
and centered on two overarching conceptions: absolutism and relationism. The former
is the view that space and time exist independently of all possible objects and object
relations, and the latter is the view that space and time depend for their existence on
possible objects and relations. The question put forward by Kant, in the 82 of
Transcendental Aesthetic, as to the origin of space and time is given as follows:

What, then, are space and time? Are they real existences? Are they only

determinations or relations of things, yet such as would belong to things even

if they were not intuited? Or are space and time such that they belong only to
the form of intuition, and therefore subjective constitution of our mind apart

from which they could not be ascribed to anything whatsoever?” (Kant, 2007,

A23/B38)

Here, Kant started his investigation as to the nature of space and time with an

ontological question; he asked what kind of entities space and time are. He wanted to

7 In fact, the construction that takes place in pure intuition of space is not only a spatial construction;
it is rather a spatio-temporal construction which requires the transcendental ideality of both space
and time to yield a-priori synthetic knowledge. This will be discussed more elaborately in the
subsequent section.
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know whether they subsist on their own, or inhere in things, or none of them. So the
opening of the passage suggests that the discussion was mainly concerned, at this
stage, with the ontological status of space. The ontological concerns of Kant can be
restated as his concerns as to the origin of our representation of space. By locating the
space and time in our minds as pure forms of sensibility, Kant avoided any
commitment to the existence of an absolute space and time, a view propounded by
Newton and Newtonians, and to the existence of space and time as relations between
things in themselves, a view purported by Kant to have been propounded by Leibniz.
He did not think that this origin lies outside of the faculty of pure sensibility. He clearly
stated in the conclusion part of §3 that space “does not represent any property of things
in themselves, nor does it represent them in their relation to one another” (Kant, 2007,
B42/B43). So all the doors for the transcendental reality of space in the form either as
an absolute empty container of things, or as relation between things are closed.

Both standpoints were criticized by Kant for several reasons. According to the
former view; entitled as absolutism, space is a totally mind-independent entity, capable
of subsisting on its own. The question, then, naturally arises: how is it that one knows
with indubitable certainty that points of space exist independent of any material
object? The question can be evaluated both from an ontological and an epistemological
standpoints. From an ontological standpoint, the claim that space, as no-thing, exists
is a bizarre claim. Kant states that the proponents of this view “have to admit two
eternal and infinite self-subsistent non-entities, which are there yet without there being
anything real.” (Kant, 2007, B56/A40) From an epistemological standpoint, given that
one cannot obtain any empirical information by any means about these points, it is a
rightful question to ask. There seems to be an insurmountable epistemological barrier
that needs to be overcome by the proponents of the view of space, as an empty
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container. Empirically speaking, the problem is that space is causally inert, it does not
affect our sensory organs and consequently it is not causing any sensible effect. This
IS a view not acceptable by Kant, for it is committed to the belief that the knowledge
of a thing as it is in itself is possible even though there seems to be no way to be
acquainted with it in a possible experience. The proponents of this view,
notwithstanding the insurmountable ontological and epistemological problems they
are facing, were committed to the transcendental reality of space and time by locating
the origin of space outside our form of intuition.

The latter view, entitled as relationism, is the view that space and time are
nothing but relations among objects. According to this view, the existence of space is
dependent upon the relations of objects, so without there being the experience of the
objects first, the idea of space cannot arise in us. Thus, it can be said that the perceiving
of appearances is prior to the existence of space. This means that space is not
something over and above the objects of experience. In brief, without there being
objects; space would lose its meaning and could not exist.

That the space is transcendentally real as a system of relations between things
as they are in themselves was propounded by Kant to be the position of Leibniz.
Leibniz held that space and time are phenomena bene fundata. Phenomena bene
fundata, when translated from Latin to English, means well-founded phenomena.
Well-founded phenomena are the ways in which the various activity of monads®
appears to us in a confused manner. Space and time, as being confused representations

of monads, are in fact real and thus representative of things in themselves. The only

8 Monads are mind-like simple substances which are the ground of all corporeal phenomena in
Leibniz’s philosophy. A detailed discussion as to the nature of monads takes place in Leibniz’s
Monadology.
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difference between monads and phenomena is that there exists a degree of clarity and
distinctness in the idea of them; monads are the supreme reality, but phenomena are
the confused representations of these monads and their various activity. But they are
the one and the same reality for Leibniz; the difference between them comes only in
degrees, not in kind, as Kant propounded. So space and time, under Leibniz’s
treatment, becomes a real, yet confused representation of the activity of the monads,
which is interpreted by the subject as relations between them, and the transcendental
distinction between appearances and the reality is lost. Kant, by locating the origin of
space in our faculty of pure sensibility, secured the transcendental distinction between
appearances and reality and thereby granted that our sensibility is not a confused
representation of things as they are in themselves. It is clearly explicated by Kant in
the following passage taken from 88 in The Critique of Pure Reason:
...all our intuition is nothing but the representation of appearance; that the things
which we intuit are not in themselves what we intuit them as being, nor their
relations so constituted in themselves as they appear to us, and that if the subject,
or even only the subjective constitution of the senses in general, be removed, the
whole constitution and all the relations of objects in space and time, nay space and
time themselves, would vanish. (Kant, 2007, A42/B60)
This, as a consequence, do secured the necessary and universal progression of the
science of geometry. Had space and time had been entities in themselves, either as
substances or as relations, how could we legitimately confer a-priority and apodictic
certainty to the geometric propositions? Kant rightly raised this question. Under this
view, the apodictic certainty and necessity of geometrical propositions could not have
been justified; for they would have been nothing but a set of general relations

abstracted from experience, which can only grant us a-posteriori knowledge. Even if

we do concede that the geometry is a necessary and universal science; it’s relation with
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appearances would remain problematic. This is brilliantly summarized by Kant as

follows:

...But since they are unable to appeal to a true and objectively valid a priori
intuition, they can neither account for the possibility nor bring the propositions of
experience into necessary agreements with it. (Kant, 2007, A41)

It is only in virtue of having their seat in the subject, as was discussed in the section
about the nature of a-priori judgments, could the universality, necessity and apodictic
certainty of the propositions of geometry have emerged along with its necessary
agreement with the propositions of experience. To show that space actually has its seat

in the subject and is in fact transcendentally ideal, Kant also stated the following:

Space is not an empirical concept which has been derived from outer
experiences. For in order that certain sensations be referred to something
outside me (that is, to something in another region of space from that in which
| find myself), and similarly in order that | may be able to represent them as
outside and alongside one another, and accordingly as not only different but as
in different places, the representation of space must be presupposed. (Kant,
2007, B38/B39)

This means that we cannot read from any appearance anything spatial; the spatiality is
something that we bring into the appearances. The assumption that those spatial
relations are derived from experience begs the question for Kant; for any ascription of
polyadic relational predicates to appearances already presupposes the idea of space, so
the spatiality of appearances cannot be mentioned without first having an idea of space,
thus this idea is not derived from experience. In Patricia Kitcher’s words:
Kant may also be noting that Leibniz's own position in the correspondence with
Clarke suggests that our representation of space involves a priori elements. Leibniz
claims that we perceive objects in various positions relative to one another. We
then abstract from the objects and think of the positions themselves, filling in the
currently unoccupied places in the perception, to reach the intellectual idea of
space as a system of positions for actual and possible objects. Thus Leibniz seems
committed to the view that the creative subject is responsible for elements in our
representation of space. So Kant's point may also be that it is inconsistent for

Leibniz to characterize [the representation of] space as a product of the creative
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activity of the subject and then to claim to have shown that it depends on actual
objects encountered in perception. (Kitcher, 1987, p.234)

It is hard to be oblivious to the apparent symmetry between the content of our
geometrical knowledge and the content of our representation of space. Geometry, after
all, is the science which study space. Just as the geometrical knowledge could not be
obtained discursively, that is, through the analysis of the given concepts, so our
representation of space could not be obtained in the same way, so by virtue of its
relation to our pure intuition the content of geometry becomes synthetic. It is within
that pure framework that we construct the objects of geometry. According to another
view affiliated with relationism® our representation of space could in fact be an idea
that belongs to reason itself to give the phenomena a spatial and temporal order.
According to this view, the mind generates notion of place, or distance to make an
ordered, conceptual representation of the manifold of appearances perceived by the
sense organs. At this particular juncture, Kant raised his second criticism towards
relationist accounts of space. His second criticism is about the content of those
relations. He objected to the view that the general concept of space could be a concept
(or idea) that belong to reason, and thereby rejected the view that space is nothing but
a general concept of relations.

It is not, however, altogether clear what it really means for space to be a non-
conceptual representation, and how Kant support his thesis that space is not discursive.

To understand why exactly the origin of our representation of space is located under

% Leibniz may said to have held two distinct conceptions about space which may be overlooked by
Kant. Kant accused Leibniz, on the metaphysical grounds that he equated the representation of space
and time as confused representations of things-in-themselves, therefore from Kant’s lenses, he
committed a transcendental fallacy. But Leibniz also held that space is an idea that belongs to the pure
understanding. In several passages, in his New Essays, he held that space is an idea of relation that
belong to the pure understanding. See Gottfried Leibniz, New Essays for more.
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the faculty of pure sensibility rather than in understanding, the differences between
intuitions and concepts must be elaborately discussed. Two of the most important
features of intuitions are that they are singular, in opposition to being general, like
concepts, and immediate, that is, their knowledge is not mediate and dependent upon
the knowledge of other concepts. Intuitions are singular in the sense that they can be
ostensibly referred to as something that is out there; as outside of our bodies in a
particular spatio-temporal region. Space is the condition of the possibility of any kind
of delineation or ostension; it is by virtue of our outer sense that we are able to point
towards things and refer to them as out there. There is only one unique space in which
every object appears. So it is a singular framework. When we talk about diverse spaces,
what we actually think of is the parts of the same unique space. Intuitions are also
immediate in that being aware of their presence do not require any mediation; that is
to say, the object is no longer indirectly referred to through concepts. In brief,
immediacy is related to the awareness of the actual presence of any object. Our
knowledge of space and the parts of space is not known mediately, that is, through the
mediation of other concepts. We are immediately aware of the presence of all possible
locations in space. Through these two important criteria, Kant was able to relate our
representation of space, and as a consequence of it, our knowledge of mathematics, to
non-conceptual elements.

What remains to be shown is how space and time, as pure forms of our
intuition, satisfy these two criteria. The right place to begin this proof is to point out
the discrepancy between intuitive ways of knowing and conceptual ways of knowing.
The laws of intuitive knowledge comes into friction with the laws of understanding
and this poses certain difficulties when an intuitive representation is forced by the
understanding to be represented conceptually. What is evidently different in between
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intuitive representation and conceptual representation is that the mereological®

structure of the former is exactly the opposite of that of the latter. This difference with

regard to their mereological structure is explicated both in The Metaphysical

Exposition of Space, and in The Form and Principles of The Sensible and Intelligible

World. When the part-whole relation of these two different kinds of representation is

considered, it is seen that the whole precedes its parts in an intuitive representation,

whereas the parts precede the whole in a conceptual representation. So the totality of

an intuitive representation is given prior to its parts; whereas the totality of a

conceptual representation demands to be constructed from its parts. The third

proposition of The Metaphysical Exposition of Space goes as follows:

Space is not a discursive or, as we say, general concept of relations of things
in general, but a pure intuition. For, in the first place, we can represent to
ourselves only one space; and if we speak of diverse spaces, we mean thereby
only the parts of one and unique space. Secondly these parts cannot precede
the one all-embracing space, as being, as it were, constituents out of which it
can be composed; on the contrary, they can only be thought as in it. Space is
essentially one, and the manifold in it, and therefore the general concept of
spaces, depends solely on the introduction of limitations... (Kant, 2007, A25)

To support this claim that the all-embracing space is given prior to its parts, Kant

immediately recurs to the problems that occur in trying to represent it conceptually:

Space is represented as an infinite given magnitude. Now every concept must
be thought as a representation which is contained in an infinite number of
different possible representations (as their common character), and which
therefore contains these under itself; but no concept, as such, can be thought
as containing an infinite number of representations within itself. It is in the
latter, however, that space is thought; for all the parts of space co-exist ad
infinitum. Consequently, the original representation of space is a-priori
intuition, not a concept. (Kant, 2007, B40)

10 Mereology is a branch of philosophy which studies the relationship between the parts and the

whole.
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The understanding of these passages is difficult even by Kantian standards. The
decryption of the passage requires a clear understanding of what Kant possibly have
meant by two different kinds of containment relations; it seems that to be contained
within something is not to be confused with to be contained under something. One of
the most illuminating interpretations to make sense of the difference between those
two distinct containment relations comes from Michael Friedman. According to
Friedman, “B40 operates with Kant’s particular notions of extension and intension”
(Friedman, 1992, p. 67). By extension, it should not be understood, however, the
modern usage of the term. Friedman states that “the modern notion of the extension
of a concept was completely foreign to Kant” (Friedman, 1992, p.68). Extension,
according to the way it is generally used and accepted in the modern literature, is a set
of particular objects that fall under a given concept. So, according to this definition,
the particular tables are the extension of the concept of table. But here, extension of a
concept is not the particular objects which partake under a concept because they share
a certain property; the extension is itself a concept which falls under another in a given
conceptual taxonomy. The concepts; <bachelor> and <unmarried>, for example falls
under the more general concept, <men>. So those concepts are extensions of <men>.
The intension of a concept, however, consists of those concepts which constitutes it.
So the same concept, the concept of man has this intension: <rational>, <animal>,
<material> and <created being>. In other words, the intension of a concept is the
definition of a concept with reference to the higher concepts under which the first
concept is subsumed. So the concept of men contains within itself <rational>,
<animal>, <material>, and <created being>.

No concept contains within itself, as do spatio-temporal quantities, infinitely
many representations. If <bachelor> contained within itself infinitely many

36



constituents, the analysis would never terminate. This would practically render our
concept unintelligible, for in order to comprehend a concept, we must first comprehend
the concepts which collectively constitute it. So, in order for our concept to be rendered
intelligible, the number of concepts that collectively constitute it (intensions) must be
finite. If space is to be represented conceptually, then the particular instances (regions)
of space must be considered as intensions of the general concept of space. But every
instance of space, due to the fact that space is infinitely divisible, already contains an
infinitely many sub-regions, and those sub-regions infinitely many other regions, and
this goes on ad infinitum. Accordingly, neither the synthesis of those quantities, that
is, the progress from the given regions, would give us the totality of space, nor the
analysis of them, that is, the regress from the given part to its constituents, would come
to an end and terminate in a simple part which is not a part of anything else, if we were
to represent space conceptually. Therefore, when it comes to the representation of
continuous quantities!!, the only way to represent them is through intuition. Only our
intuition is able to give us an object immediately and in a singular way. According to
Kant, his argument from infinity provides us with a clear intuitive grasp of the one and
unique space, so he argues that space must be a form of intuition. Because when we
attempt to represent diverse spaces, we generally assume those diverse spaces, as Kant
states, a part of a one and all-embracing unique space. What follows from this is the
following: space is both singular and immediate. It is immediate, for no mediation is
required for us to intuit space; we have a direct relation to it; it is presented to us

directly. It is singular, for its parts is not given prior to the whole of it; on the contrary,

11 Space and time, for Kant, are quanta continua, which are given as enclosed within limits. They are
given within limits because “any portion of space must be composed of smaller portions, and therefore
can’t be ‘simple’ in the sense of not having parts” (Kant, 2017). Therefore, the only simple items in
space are not portions, but limits, which can be divided further into simpler elements.
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its parts can only be thought within it. When it comes to the sense impressions that we
receive through our sense organs, that we have an immediate relation to them and that
they are singular seem to be so obvious that we are not obliged by an internal
mechanism to offer any kind of proof. But when it comes to our representation of
space; since the form itself does not reach us as impressions do, certain justifications
seem quite indispensable. And the argument was provided by Kant to ease the doubts.

In conclusion, the space is neither absolute, nor relational; the emphasis on the
absolute/relational debate has been shifted into ideal/real. It is also not a conceptual
representation, but an intuition. Geometry, as an action of the geometer, takes place in
this pure intuition completely a-priori. But as was laid out in the previous sections, we
cannot rest in these pure intuitions if we are to produce mathematical knowledge; we
also have to recognize what we actually intuit under concepts. Kant famously asserted
that “to construct a concept is to present the intuition corresponding to it a priori"
(A713/B74). If the concept has no intuitive content, it is empty, therefore it must find
its referent in the pure intuition. The process of the formation of geometrical
knowledge was brilliantly summarized by Kant in The Critique of Pure Reason,
Transcendental Deduction. The construction procedure is what remains to be fully

explicated in this chapter in the following section.

3.5. Construction in Pure Intuition

In Transcendental Deduction, Kant speaks of a three-fold synthesis in order to
account for what actually takes place within the mind during the process of synthesis
and the generation of concepts. Even though TD aimed at providing a transcendental
ground for the deduction of the pure concepts of the understanding, it nonetheless
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provides the reader with illuminating insights as to how construction of the
geometrical concepts in pure intuition takes place. So the analysis of this three-fold
synthesis which essential to obtain any knowledge whatsoever will shed a light into
our understanding of what necessarily takes place in the mind of a geometer during
the procedure of construction.

The mentioned three-fold synthesis is composed of synthesis of apprehension,
synthesis of reproduction and lastly, the synthesis of recognition. All these three-
syntheses take place a-priori in mind, therefore provide the transcendental ground for
the possibility of knowledge. Every synthesis; be it a synthesis of outer representations
or inner representations, must be carried out according to the conditions of our inner
sense, which is entitled as the pure intuition of time by Kant. Therefore, what must be
considered first is the temporal nature of our consciousness; for all representations, be
it outer or inner, necessarily belong to inner sense as Kant states in Transcendental
Aesthetic. Thus all our representations are modifications of inner sense; by means of
our inner sense, representations are intuited successively, one succeeding the other in
time. First and foremost, what is needed for a proper cognition is to unify our
representations that succeed each other into a whole so that they be represented as a
single representation. The synthesis of apprehension aims at providing unity for our
representations; due to the temporal nature of our consciousness, the processing of
every representation requires time, and through the synthesis of apprehension, the
synthetic unity of the manifold, given successively in time as a modification of inner
sense, is constituted. A spatio-temporal manifold, which we are receptive of due to our
pure forms of intuition, is unified under a single representation and represented as a
whole through this synthesis. Kant states that we should never have a-priori
representations of space and time without the synthesis of apprehension. Because a
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geometer constructs objects in the pure intuition of space through delimiting the one
and unique space. This means that the space has now become itself the object so as to
be determined; the manifold in it must be subjected to the conditions of the inner sense
and unified.

Moving onto the synthesis of reproduction, we witness that Kant divided the
synthesis of reproduction into two; the one which is carried out in the empirical
imagination, and the other which is carried out in the transcendental imagination.
Since the geometry proper is predicated upon the one which is exercised a-priori, the
focus of our attention must be directed to the analysis of the synthesis that takes place
in the transcendental imagination. For Kant, there must be something which, as the a-
priori ground of the necessary synthetic unity of appearances, makes their reproduction
possible. That ground is none other than the transcendental imagination. In the
transcendental imagination, the synthesis of production takes place. It is that which
enables us to retain previously constructed representations in our imagination in order
for us to be able to connect them with others that comes after them in the given sequel.
Kant provides an example as to what really takes place in our imagination when we
are making the synthesis of production:

I seek to draw a line in thought... obviously the various manifold

representations that are involved must be apprehended by me in thought one

after the other. But if |1 were always to drop out of thought the preceding
representations (the first parts of the line ...), and did not reproduce them while
advancing to those that follow, a complete representation would never be
obtained... (Kant, 2007, A102/103)
So a geometer successfully keeps in his mind the previous parts of a line (points) that
he constructed in order to carry out one’s construction and be able to represent oneself

a line. Without this power of imagination, he would always drop out of thought and

never be able to represent a particular whole (say, a line). This activity of drawing was
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given a different nuance in the B-Deduction. It was stated as this drawing is none other
than the figurative representation of time, whereby the manifold of outer intuition is
determined by means of our inner sense:
We cannot think a line without drawing it in thought... Even time itself we
cannot represent, save in so far as we attend, in the drawing of a straight line
(which has to serve as the outer figurative representation of time), merely to
the act of synthesis of the manifold whereby we successively determine inner
sense, and in so doing attend to the succession of this determination in inner
sense. Motion, as an act of the subject (not as determination of an object), and
therefore the synthesis of the manifold in space, first produces the concept of
succession. (Kant, 2007, B155)
Kant confronts the reader with a very interesting and puzzling part; he talks about
motion but apparently in a different sense. To a reader who is ready to come to a hasty
conclusion, it might sound as if Kant has blended certain empirical elements into the
construction of a figure. But as it was carefully explained in the footnote below the
passage; the motion as an act of a subject is not the same thing as motion as a
determination of an object, the latter belongs to an empirical science, but former to a
pure science, which is entitled as phoronomy in Kant’s Metaphysical Foundations of
Natural Sciences (1786). Kant noted the following: “Motion, however, considered as
the describing of space, is a pure act of the successive synthesis of the manifold in
outer intuition in general by means of the productive imagination.” (Kant, 2007, B156)
This proves that the construction of the geometrical concepts are not only spatial, but
spatio-temporal. The temporal element is the necessary ingredient in every spatio-
temporal construction, for it alone makes possible the act of drawing in the first place
and the synthesis of the manifold in intuition.
The last and the most important ingredient of the three-fold synthesis is the

recognition of the manifold under a concept. In A-Deduction, Kant opens up the

section as follows: “If we were not conscious that what we think is the same as what
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we thought a moment before, all reproduction in the series of representations would
be useless.” (Kant, 2007, A103) The passage seems to be solely concerned with the
identity of our representations; for without it, neither apprehension, nor reproduction
would make any sense, for the representations would crowd up in the soul, as put by
Kant, without being in a thorough connection with each other. Every representation
thereby generated in time would seem to be a new representation without such a
function of the understanding. The rule whereby we connect all representations with
one another, and become conscious of the identity of them in time is none other than
the synthetic unity of consciousness in the synthesis of the manifold of representations.
This synthetic unity of consciousness is the transcendental ground of the unity of the
synthesis of all manifold of intuition. Kant defines this synthetic unity as “pure original
unchangeable consciousness” which goes by the name of transcendental
apperception. The act through which the mind is capable of becoming conscious of
the identity of a function whereby it synthetically combines the manifold into a single
general representation which is generically identical to itself is the same act through
which the consciousness of a manifold of intuition that pertains to its identity through
time is made possible. So every act of unification and identification (be it the act of
bringing various representations under a general representation, or the act of bringing
together various intuitions) is necessarily predicated upon the original transcendental
unity of consciousness. Through transcendental apperception, the awareness of the
unity of the concept under which particular representations are subsumed, and the
unity of the manifold of intuition which is successfully reproduced and apprehended
made possible.

The analytic unity of consciousness is the same consciousness which is found
in many distinct representations (one-in-many). It is the same “I” that we find in
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distinct representations, therefore the original transcendental apperception has an
analytic unity. But in order for us to be able to represent to ourselves the identity of
this consciousness present in distinct representations, we must unite the given
manifold of representations synthetically in one consciousness due to the temporal
nature of the consciousness. The temporality of our consciousness demands that we
do this necessary synthesis of the manifold given successively in time in order to
obtain a unitary and single consciousness of it. This is why the analytic unity of
consciousness, and along with it the analytic unity of concepts and logical forms of
judgment, requires an active synthesis in time and brought into a synthetic unity
(many-in-one).

The synthetic unity of apperception is therefore the highest principle of all
understanding and precedes all concepts of the understanding. In fact, it is by virtue of
the synthetic unity of apperception that the unity of the pure form of logical judgments
and the unity of given concepts that enter into possible judgments made possible. It
simply is the supreme principle of all understanding.

The consciousness of the homogeneity of the successive parts of a line,
produced by the geometer in the transcendental imagination, has its ground in the
synthesis of recognition, and therefore, in the transcendental unity of apperception. It
is by virtue of the identification of the temporal parts as homogeneous the geometer
can prove certain propositions in geometry, for without congruence relations in
geometry, nothing can be proven. This is explicated by Kant along these lines:

Consciousness of the synthetic unity of the manifold and homogeneous in

intuition in general, in so far as the representation of an object first becomes

possible by means of it, is, however, the concept of magnitude (quantum).
(Kant, 2007, B203)
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The pure concepts of the understanding are, then, used as a rule of the unification of
the manifold of intuitions, and through that rule we are able to recognize every
temporal part of a manifold, given successively, as an identical instance of the general
concept of magnitude. The rule describes the identity of the function whereby the
synthesis of the manifold is iterated completely in an identical manner to generate
series of homogenous syntheses in time in the production of the instances of the
concept of magnitude. Thereupon, the construction of all of the objects of geometry
must be in conformity with the category of quantity which serves as a rule whereby
the geometer become conscious of a homogeneous intuition.

The necessary conformity between the produced manifold of intuitions in the
imagination of the geometer and the concept whereby the same manifold in the
imagination is unified under a generic whole is predicated upon the possibility of the
subsumption of intuitions under concepts. It is by virtue of the pure schemata of the
concepts that the intuitions are glued to concepts. A schema is nothing other than the
transcendental determination of time which is both homogeneous to concepts and
intuitions. This is because each category, when schematized, represent a different
determination of time. The schemata, for Kant, “are thus nothing but a-priori
determination of time in accordance with rules. These rules relate in the order of the
categories to the time-series, the time-content, the time-order, and lastly, to the scope
of time.” (Kant, 2007, B185). With this last gluing link, Kant was able to show, on one
hand, the possibility of the subsumption of appearances under the respective geometric

conceptst? (viz., <triangle>, <circle>, et. al) and on the other hand, the possibility of

2 |n fact, Kant opens this passage with an example from geometry to show that the construction of
the geometrical concepts can be taken as a paradigm case of schematism. It is through constructing a
figure in pure imagination (such as drawing a line in thought) that we make possible any geometrical
concept. So, as Jgrgensen put it brilliantly; “our capacity for producing images by means of schemata
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subsuming them under the pure concepts of the understanding; especially under the
concept of quantity.

Taken this way, the schema of a given concept becomes the condition for the
possibility of the construction of the very concept. Through schematization, images
are subsumed under their respective geometric concepts. The following passage
brilliantly summarizes the point made by Kant:

The image is a product of the empirical faculty of reproductive imagination;

the schema of sensible concepts, such as figures in space, is a product and, as

it were, a monogram, of pure a-priori imagination, through which, and in
accordance with which, images themselves first become possible. These
images can be connected with the concept only by means of the schema to
which they belong. (Kant, 2007, A142)
By ‘image’, what Kant simply equates the particular image of a triangle that we can
form in our imagination with the image received through our sense organs. At the
outset of this chapter, we entitled the former as mental image and the latter as sensible
image. They both stand under the same rules prescribed by schematism. Schema, is
the function which acts as a norm in prescribing the law-governed connection between
the image and the concept. It is, to an important extent, the condition of the possibility
of the image. Schema enables us to relate two images (as intuitions) as ‘homogeneous’,
for both share the same spatio-temporal content, for both are constructed according to
the same set of operations. The image is nothing other than the object, which is realized
in the experience.
The geometry is thus established as a pure a-priori science; Transcendental

Aesthetic provided space as the necessary content of geometry, and Transcendental

Logic provided the pure concepts which function as necessary rules in constructing

can be seen as a transcendental condition for knowledge and objective representation.” (Jgrgensen,
2005, p. 3)
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geometric concepts in the pure intuition of space. The mediation between sensibility
and understanding is accomplished via imagination; it is through the transcendental
Imagination that the pure concepts of the understanding are schematized and made
possible to be used in the science of geometry.

The three-partite relation between space, geometry and our spatial perceptions are
thus finally established. Space stands as the necessary pre-condition for both geometry
and the geometrization of appearances. Without having first been acquainted with such
a-priori framework, neither construction of any geometrical concept, nor the
recognition of any appearance under those concepts be made possible. Through
schematism of the pure understanding, appearances are subsumed under respective
geometrical concepts; without concepts no knowledge is possible, therefore
schematism of pure understanding, along with our pure intuition of space, is the

necessary condition for the possibility of geometry.

3.6. Summary

Kant’s theory of geometry, as was tried to be shown in this lengthy chapter, is
standing on three pillars. The first pillar is Kant’s view as to the origin of our
representation of space, it is formed as a solution offered to two dichotomous options;
reality and ideality. Kant has chosen the latter and viewed space as ideal. As regards
the content of our representation of space, the second pillar is formed as a solution to
the dichotomy between intuitions and concepts. Kant located space and thereby the
objects of geometry in intuition. So his answer to this dichotomy was that space is not

a concept but an intuition. Finally, as regards the modality of our representation of
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space, the third pillar is predicated upon the dichotomy between a-priori and a-
posteriori. Kant held that space is an a-priori and an intuitive framework.

Without the collaborative work of our faculty of sensibility and understanding,
no geometrical knowledge can arise. The construction of the concepts in pure intuition
demands the subsumption what is manifold in our intuition under concepts. Along with
the role played by our pure forms of sensibility, what must not be overlooked is the
peculiar role played by schematism of pure concepts of understanding, for the
construction of the geometrical concepts in pure intuition is the paradigmatic exemplar
of how schematism works in producing a-priori knowledge of geometry.

In the following chapters, it will be seen that how the opponents of Kant’s
theory of geometry tackled these dichotomies, in the light of the discovery of non-
Euclidean geometries, in their rejection of Kant’s theory of geometry. The discovery
of non-Euclidean geometries, and along with it its wide ranging applications in
astronomy and cosmology posed serious threat to Kant’s theory of geometry. The
monumental edifice, upon which is constructed upon these three pillars seemed to be
on the verge of collapse. In the face of the advent of non-Euclidean geometries, Kant’s
theory of geometry required certain modifications and reconsiderations in order that it
be reconciled with these new geometries.

Prior to the explication of the views of the opponents of Kant’s theory of
geometry, a concise history of non-Euclidean geometries is going to be presented in

the next chapter.
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CHAPTER 4

THE DISCOVERY OF NON-EUCLIDEAN GEOMETRIES

For a considerably long period of time, the mathematicians from the late
antiquity to Renaissance tackled the parallel postulate of the Euclidean geometry. The
parallel postulate had always been suspected to be a redundant proposition for
mathematicians for many reasons. Mathematicians either had been dissatisfied with it
as not being self-evident as the other four postulates, or as being capable of deduced
from the rest. In the middle of the 18™ century, the logical independence of the parallel
postulate was discovered by Girolamo Saccheri and it prepared the ground for a fruitful
research for alternative geometries carried out by subsequent geometers mentioned
above.

Saccheri’s approach to the enigma of the fifth postulate was different than his
predecessors. All of the mathematicians®® and philosophers who tried to derive the
fifth postulate before Saccheri either tried to deduce it by assuming other premises the
truth of which must be taken as self-evident, or tried to deduce from the rest of the
postulates and failed in their attempts. Saccheri tried to show that assumption of the

negation of the fifth postulate must be incompatible with the rest of the theorems in

13| need not go to the details of every attempt made prior to Saccheri, for it is out of the scope of the interest of
this thesis. A keen reader can find all the data in Harold E. Wolfe’s wonderful book, Introduction to Non-Euclidean
Geometry (1945).
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Euclid’s Elements. In other words, the negation of the fifth postulate is a threat to the
consistency of the entire system.

The implementation of reductio ad-absurdum®* was indeed a novel attempt
which hitherto had not been tried. In The Euclid Vindicated from Every Blemish
(2014), Book 1, Saccheri listed, in total, 33 propositions. The first three propositions
make use of quadrilaterals which, today, go by the name of Saccheri quadrilaterals.
Each proof, then, begins by a construction of a specific quadrilateral. Saccheri’s
quadrilaterals are different from one another in terms of their summit angles. It can be
seen from the first propositions that the summit angle of the constructed quadrilateral
are either equal to, greater than, or less than a right angle. So there are, in total, three

quadrilaterals to be considered for each proposition.

1% In logic, it simply means deriving, from a given proposition to an absurd conclusion by assuming a
false premise in the start. It is also a strategy to derive the truth of a given proposition indirectly by
demonstrating that an absurd and impossible conclusion follows upon the assumption of the negation
of the given proposition.
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In first proposition, he established that the summit angles must be congruent to
one another. In the second proposition, he proved that if the quadrilateral is bisected
in the points M and H, then the angles at the joint MH will always be right angles. In
the third proposition, he showed that the upper base of the quadrilateral on the joints
of which the summit angles are contained must be equal to, greater or less than the
base of the quadrilateral according as the summit angles are right, obtuse or acute
respectively. In some of the remaining postulates, it can be seen that even though he
managed to derive contradictory consequences on the assumption of HOA, he could
never find any under the assumption of HAA. He was able to derive bizarre conclusions
that followed from HAA which were later to be deemed as theorems of hyperbolic
geometry.

It is very probable that Saccheri dismissed his findings due to their intuitive
implausibility. Saccheri added that “the hypothesis of the acute angle is absolutely
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false, because it is repugnant to the nature of the straight line.” (Bonola, 1912, p. 43),
which is nothing but an extra-logical reaffirmation of the truth of the fifth postulate.
The parallel postulate, after all, is a statement about the behavior of straight lines; so
rejecting HAA on the basis of his pre-conceptions about what straight line actually is
gives away his intuitive stance towards parallel postulate from the beginning. Had he
realized that he was on the verge of finding a new geometry, the discovery of the non-
Euclidean geometries could have been made a century earlier.

After Saccheri, the next person who deserves to be credited in the course of the
attempts made to vindicate Euclid, is without doubt Lambert. Lambert’s approach was
very similar to that of Saccheri. He made use of quadrilaterals and approach the
problem through assuming the impossible, that is, the negation of the fifth postulate.
The difference between the quadrilateral used by Saccheri and that used by Lambert
is that the former included two summit angles whereas the latter had only one summit
angle. The consequences that he was able to derive was much richer and exotic.
Lambert was able to show that there is a relation between the area of a triangle and the
sum of its angles. In HOA, the area of a triangle is directly proportional to the sum of
its interior angles plus two right angles. In HAA, the area of a triangle is directly
proportional to the sum of its interior angles minus two right angles®®. (Wolfe, 1945,
p.33). He also noticed that the geometry based on HOA resembled spherical

geometry'®. The geometry, on the other hand, based on HAA, could be modelled on a

15 Mathematically, they can be expressed as follow: in the case of HOA, the formula for the area of a
triangle becomes AA =r?(mt + o+ B +y). In the case of HAA: AA =1t- (a+ B + ).

16 Spherical geometry is a branch of geometry which is made on the surface of a sphere. On the surface
of a sphere, an area of triangle is directly proportional to the magnitude of the sides of the triangle, as
the sides get bigger so does the area. This is what Lambert observed when dealing with HOA. It is
through the realization of the similarity between the geometry based on HOA and spherical geometry,
he was able to conclude that the same property holds for the triangles in the geometry based on HOA.
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sphere with an imaginary radius’ (Wolfe, 1945, p.34). The last remark he made about
the geometry based on HAA is that the figures, such as triangles and quadrilaterals,
generated in it have an absolute unit of length'® (Wolfe, 1945, p.34).

Both Saccheri and Lambert were on the same boat; they already had been pre-
occupied with certain kind of tacit assumptions as to the nature of the fifth postulate
prior to their investigations and their attempts to show its truth by virtue of reductio
arguments. Therefore, neither of them were able to realize that they are on the verge
of discovering a new territory in geometrical landscape.

The situation took a completely different course with Bolyai, Lobachevsky,
Schweikart and Gauss. They were indebted to the works of Saccheri and Lambert in
that both Gauss, Bolyai and Lobachevsky began their investigations with the
utilization of the reductio method first tried by Saccheri and Lambert. Unlike,
however, Saccheri and Lambert, their mind were more open to embrace the new
evolution of geometry. It seems as though these mathematicians were no more under
the spell of the dogma of the centuries, and had their gaze fixed on a new landscape.
There were many reasons which delayed the admission of a new geometry. One of the
important reasons which delayed it was of course the orthodoxy of Kant’s theory of

space among philosophers and scientists. Nobody was ready to give credence to a

7 Imaginary sphere is a sphere with a radius of an imaginary quantity, which is usually denoted in
mathematics by the symbol ‘i’. In connection with the formula for the area of a triangle in the
geometry based on HOA and HAA, one can obtain the formula for the area of an acute triangle by
simply substituting ‘r’ in the formula r?(rt + a + B + y) with ‘i’ the square of which is equal to -1. One
obtains, thus, by making the appropriate substitution, the formula for the area of an acute triangle, it
-(a+B+y).

18 This means that as one is provided an information as to the angles of a given triangle or a
quadrilateral, oneis likely to find its absolute length. This has certain consequences; unlike in Euclidean
geometry, the objects do not have scalable properties, and the congruence relations do not hold for
the same kind of object across different scales in the geometry based on HAA. In Euclid’s Elements the
constructed figures are always in a constant relationship independent of their scale. This is no longer
true in the latter geometry.
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system of geometry which was completely at odds with the picture of space drawn by
Kant. Another reason was that the rate of transfer of ideas took place relatively slowly
compared to the rate at which they are transferred today. It took years for the discovery
made in the one portion of the earth to reach other portion of it. And thirdly, the pre-
eminence of Euclidean geometry and its successful inheritance over almost two
thousand years. Notwithstanding all these factors, things began to change with Bolyai,
Lobatchevsky and Gauss.

Gauss published, compared to the publications made about the possibility of
new geometry, almost no substantial work. But his lifelong interest as to the subject
matter can be traced from the letters he exchanged with Farkas Bolyai, F. A. Taurinus,
and many others. It was Gauss who first recognized, along with Lobatchevsky,
Schweikart and Janos Bolyai, the geometry based on HAA as a new geometry, and was
the first person to call it Non-Euclidean geometry (Wolfe, 1945, p.46). In a letter to
written at Gottingen on November 8, 1824 to Taurinus, he stated that “the assumption
that the sum of three angles is less than 180° leads to a curious geometry, quite
different but thoroughly consistent.” (Wolfe, 1945, p. 46) And he also mentions about
a constant he discovered which, when taken infinitely large, makes the new geometry
approximates to Euclidean in the same letter to Taurinus. He also states that all his
attempts were in vain to discover a contradiction in this new system. His meditations
on these issues led him to the idea that space is something utterly mysterious to us and
led him to adopt an empiricist theory of space. To quote from the same letter:

But it seems to me that we know, despite the say-nothing word-wisdom of the

metaphysicians, too little, or too nearly nothing at all, about the true nature of

space, to consider as absolutely impossible that which appears to us unnatural.

But if this Non-Euclidean geometry were true, and it were possible to compare

that constant with such magnitudes as we encounter in our measurements on

the earth and in the heavens, it could then be determined a posteriori.

Consequently in jest I have sometimes expressed the wish that Euclidean
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geometry were not true, since then we would have a priori an absolute standard
of measure. (Wolfe, 1945, p. 47)

The idea that Euclidean geometry may not be the true geometry of space, and in fact,
may be a chapter of another geometry which encompass it, was not novel to Gauss.
Karl Ferdinand Schweikart, in 1818, already developed a system in which there were
two kinds of geometry; Euclidean and Astral (Halsted, 1900, p. 251). The sum of the
interior angles in the former adds up to two right angles whereas in the latter to less
than two right angles. He, like Gauss, talks about the same constant®® that belong to
astral geometry which, when taken large enough, yields Euclidean geometry. This, in
fact, makes the first explicit description of a non-Euclidean geometry, which is made
prior to the discovery of it by Janos Bolyai in the year 1923, and Nikolai Lobachevsky
in 1926.

The first publication made that established non-Euclidean geometry as a
consistent system of geometry was made by Janos Bolyai in the year 1923. Janos
Bolyai was the son of Farkas Bolyai, who also had long been occupied with the
problem of parallels. Janos Bolyai also started, like Saccheri and Lambert, his attempts
to prove the fifth postulate by negating it. But prior to that, he changed the fifth
postulate as had been formulated by Euclid with Playfair’s?®®. The denial of the
postulate, thus, implies that either no parallel lines could be drawn through a given

point to a line or many parallels could be drawn (Wolfe, 1945, p. 50). Bolyai eliminated

19 The letter in which Gauss talked about such a constant is that which was exchanged with Franz
Taurinus, who was the nephew of K. F. Schweikart and whose attention was first directed to these
matters by his uncle Schweikart. So, Gauss may have first acquainted with the idea of such a constant
through Schweikart.

20 playfair’s axiom is an axiom which was preferred to the fifth postulate in Euclid’s Elements. The
axiom is stated by Playfair as follows: “In a plane, given a line and a point not on it, at most one parallel
to the given line can be drawn through the point” (Playfair, 1846, p. 29). The term “at most” is added
to the original postulate to show that the parallel line drawn is unique.
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the former hypothesis by arguing that it contradicted with the 27" and 28"
propositions?! in Euclid’s Elements (Wolfe, 1945, p. 50). The consequences drawn
from the second hypothesis, however, never ceased to amaze Bolyai for a very long
time. He concluded that if there can be drawn two lines that are not parallel through a
given point to a given line, then there must be infinitely many lines parallel to a given
line (Wolfe, 1945, p. 50). As he worked upon the second hypothesis, he realized that
a consistent geometry has risen from the assumption of its existence; he could not find
any contradiction in this new system he is dealing with. He published all of his ideas
and formulations in the book named Appendix in the year 1832.

Independently of the discoveries of Janos Bolyai, Nikolai Lobachevsky already
reached similar conclusions in the year 1826 in Kazan. The results he obtained was
similar to that of Bolyai; he discovered that a geometry exists in which there can be
drawn, to a given line and through a point, more than a single line. The interior angles
of the triangles constructed within that geometry is also less than 180° (Wolfe, 1945,
p. 52).

The methodology used by Bolyai and Lobachevsky was the same as that used
by Euclid; they were using what is called synthetic method in which they proceeded
from certain axioms, postulates and definitions towards theorems. It is a progressive
method developed by Euclid. With Riemann, an analytical method is developed in the
treatment of space. The synthetic treatment of space required that the geometrical

character of space could either be described by the propositions of Euclidean

21 In the proposition 27, it is proven that if two straight lines intersected by a third line making the
alternate interior angles congruent to each other, then the two straight lines must be parallel. It is
provided by the second postulate that two straight lines can be extended indefinitely, therefore the
proposition 27 clearly shows the existence of parallels which contradicts with the first assumption that
there exist no parallels to a given line.
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geometry, or by the propositions of the new geometry developed independently by
Bolyai, Lobachevsky, Schweikart and Gauss. More and more, especially with
Schweikart, Taurinus and Gauss, it is believed that the geometry that is fit to describe
the astronomical scales is astral geometry, and Euclidean geometry is nothing but a
special case of this geometry. The assumption is grounded upon the discovery of the
constant described by Schweikart which, when taken to infinity, yielded Euclidean
space. Thus astral geometry seemed to have included Euclidean space in itself. But
with Riemann, space is completely rid of a particular geometrical character. In his On

the Hypotheses which lie at the Foundations of Geometry, he stated the following:

It is known that geometry assumes, as things given, both the notion of space
and the first principles of constructions in space. She gives definitions of them
which are merely nominal, while the true determinations appear in the form of
axioms. The relation of these assumptions remains consequently in darkness;
we neither perceive whether and how far their connection is necessary, nor a
priori, whether it is possible... The reason of this is doubtless that the general
notion of multiply extended magnitudes (in which space-magnitudes are
included) remained entirely unworked. | have in the first place, therefore, set
myself the task of constructing the notion of a multiply extended magnitude
out of general notions of magnitude. (Riemann, 1873, p.1)

Riemann endeavors to construct the space from the general notions of magnitude and
he adds to that that the possibility of obtaining measure-relations for a continuous
manifoldness?? rests upon measurement shortly after this passage. Given that space is

a continuous triply-extended magnitude®, what follows strictly from this is the

following: the general character of space cannot be obtained through axioms, it must

22 A collection of points or elements (objects, entities) that has the structure of a multiply extended
magnitude

2 A concept with an associated fixed number of magnitude concepts, each of which must be specified
according to its mode in order to individuate and identify an instance of that concept; ordinary physical
space, e.g., is a triply extended magnitude, because it needs three spatial lengths (coordinates, say, in
a fixed coordinate system)
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be obtained through measurement. As was brilliantly said by Reichenbach;
“Riemann's extension of the concept of space did not start from the axiom of the
parallels, but centered on the concept of metric.” (Reichenbach, 1958, p. 7).

Riemann’s theory is grounded upon the Gauss’ studies on curved surfaces and
can be characterized as a brilliant extension of it. According to Gauss’ Theorame
Egregium, the curvature of any surface, which amounts to the deviation of a curve
from a plane, can be completely determined within the two-dimensional surface alone
without embedding the surface in a higher dimensional space. What Gauss had in mind
was a geometry akin to practical geometry in which one could find how much the
surface upon which one stands is deviated from being planar by making measurements
with rigid rods. This is called as the intrinsic curvature. If one finds that the ratio of
the circumference of the circle he measured with ones measuring rods to its diameter
Is greater than =z, then one could conclude that one is standing on the surface of a
sphere, if it is less than &, on the surface with a saddle-shape, if it is exactly 7, on a
planar surface. So each surface is characterized according to the measurements
obtained with these rigid rods. Riemann can said to have advanced Gauss’ theory in
that he began with manifolds, for there existed possibility, for Riemann, that any two
surfaces had different curvature. This is why he abolished the view that the geometric
character of the all-inclusive space is given prior to the determination of the measure-
relations between manifolds which constitute it. Reichenbach commented on the
procedure adopted by Riemann as follows:

Riemann showed that it is not necessary to develop an axiomatic system in

order to find the different types of space; it is more convenient to use an

analytic procedure analogous to the method developed by Gauss for the theory
of surfaces. (Reichenbach, 1958, p. 9)
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Riemann looked like an adherent of empiricism about space, perhaps similar to
Schweikart, Taurinus and Gauss. What differentiated the views of Riemann from the
others are his statement that there are different measure relations which can hold for
space. Euclidean geometry establishes one system of measure-relations; so it is only a
hypothesis used by mathematicians. So far, mathematicians preferred to use Euclidean
straight lines and segment for measurement, but Riemann thinks that the measurement
could take place with totally different lines and segments. This means that there is no
true and unique metric which we can employ to characterize the geometry of space;

space is metrically amorphous. With regard to this, Riemann wrote:

It will follow from this that a multiply-extended magnitude is capable of
different measure relations, and consequently, that space is a particular case of
a triply-extended magnitude. But hence flows a necessary consequence that the
propositions of geometry cannot be derived from general notions of magnitude,
but that the properties which distinguish space from other triply-extended
magnitudes are only to be deduced from experience. Thus arises the problem,
to discover the simplest matters of fact from which the measure relations of
space may be determined; a problem from the nature of the case is not
completely determinate, since there may be several systems of matters of fact
which suffice to determine the measure relations of space... (Riemann, 1873,

p.1)
There are many measure-relations which can be used for the determination of the
metric of the space, and Riemann thought that it is only through experimentation that
one can determine those measure relations. Mathematicians must always expand their
system and try different measure-relations. The determination would never be exact,
for we are in the domain of empirical science. It is only through the extension of the
variety of measure-relations we can get to know, of course again within the range of
probability, the true metric of space. We must extend the systems of different measure

relations to infinitely small and infinitely big and, in the light of experimentation and
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test their validity (Riemann, 1873). But possibly contrary to his thesis as to the
amorphousness of space in terms of its metric, Riemann held that the infinitesimal
distance between two points are given; so, in a sense, as, his views can be taken as a

confirmation that at the infinitesimal level, space is Euclidean.

Another remarkable achievement of Riemann is that he discovered another
kind of non-Euclidean geometry with a constant curvature. This new geometry is
obtained by the negation of the second postulate in addition to the negation of the
parallel postulate. The new geometry thus formed is finite but unbounded, for one can
walk indefinitely in the same direction without being brought to a halt. In it, every
straight line converge at two antipodal points. Therefore, there exists no parallels in
Riemann’s geometry, whereas in Lobachevski’s and Bolyai’s geometries, there exists
infinitely many parallels. It can be said that Riemann’s geometry is a “spherical
geometry extended to three-dimensions” (Poincaré, 1905, p. 38). So it naturally
follows that the surface of a sphere provides a model to Riemannian geometry in two-
dimensions. Riemann’s geometry serves as the axiomatic foundation for the spherical
geometry of two and higher dimensions.

These new geometries throw a serious challenge to Kant’s theory of space and
geometry. If the axioms of the Euclidean geometry were synthetic a-priori, how is it
that alternative geometries can in fact be conceived? The advancements initiated by
Saccheri and ended up in Riemann called into the question the soundness of Euclidean
geometry; more and more, the mathematicians adopted an empiricist approach, and
thought that space could in fact be non-Euclidean. In the next chapter, it is going to be
discussed how all of these advancements in the field of geometry impacted Kant’s

theory of space and geometry.
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CHAPTER 5

THE IMPACT OF NON-EUCLIDEAN GEOMETRIES TO KANT’S
PHILOSOPHY OF MATHEMATICS

5.1. The Possibility of Non-Euclidean Geometries in Kant’s Philosophy

The attractiveness of the thesis that space is transcendentally ideal and is
dependent upon the subjective constitution of our mind was lost after the advent of
non-Euclidean geometries. The discovery of non-Euclidean geometries almost
rendered Kant’s theory of space and geometry obsolete. The consistency and the
fruitfulness of these alternative geometries provided philosophers and scientists a
ground for their presumption that non-Euclidean spaces can be ‘conceived’, or
‘thinkable’. These new geometries are indeed thoroughly thinkable, and free from
contradiction. But does this make these new geometries conceivable in the sense that
Kant uses the term ‘conceivability ? How should a Kantian react to the thesis that non-
Euclidean geometries are as equally conceivable as Euclidean geometries?
Apparently, Kant himself did not deny that we can reason about everything as long as
our reasoning is not brought to a halt by contradictions. He claimed “I can think
whatever I please, provided only that I do not contradict myself.” (Kant, 2007,
Bxxvii/Bxxviii) From the mere logical possibility, Kant claimed, the objective validity
cannot be ascribed to the concept. To ascribe an objective validity to the concept,

something more is needed; something in the experience must correspond to the
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concept. If there exists no object which correspond to the concept, than the concept is
empty; it only stands for a possible experience, which is yet to be actualized. The
following passage can be given as a contra-thesis to the proponents of the view that
non-Euclidean geometries are as equally conceivable as Euclidean geometries:
It is, indeed, a necessary logical condition that a concept of the possible must
not contain any contradiction; but this is not by any means sufficient to
determine the objective reality of the concept, that is, the possibility of such an
object as is thought through the concept. Thus there is no contradiction in the
concept of a figure which is enclosed within two straight lines, since the
concepts of two straight lines and of their coming together contain no negation
of a figure. The impossibility arises not from the concept in itself, but in
connection with its construction in space, that is, from the conditions of space
and of its determination. And since these contain a priori in themselves the
form of experience in general, they have objective reality; that is, they apply to
possible things. (Kant, 2007, B268)
From what Kant said here, it can be inferred that there is a difference between logical
possibility and intuitive plausibility. Every intuitively plausible concept must also be
logically possible, but not vice versa. As long as the given concept cannot be
constructed in pure intuition, the concept remains empty. It must be recalled from what
is laid out in the second chapter that objective reality cannot be secured only through
constructing the given concept in pure intuition. At the end of the construction
procedure, a particular object must be realized in the experience in conformity with
the constructive action of the geometer in order for that concept to gain an objective
reality. After all, the construction, as a schema of a given concept, is a function which
acts a norm that provides a recipe for subsuming particular objects under their
respective geometric concepts; it is in virtue of the normative function that the image
Is connected to the geometric concept. At the basis of Kant’s thesis, there lies the
argument that within our experience, neither we can confront non-Euclidean relations
within our experience; nor we can construct any geometrical object that deviates from

the Euclidean characteristics in our imagination.
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5.2. Helmholtz, Poincaré and Conventionalism in Geometry

The possibility of the intuitive plausibility of non-Euclidean geometries were first
realized and extensively treated by Helmholtz and Poincaré. The views of these two
thinkers were not identical, but what was common in both of them was their effort to
provide a psycho-physiological genesis for the foundations of geometry. In a sense,
this means a return to the empiricist programme. But even though Helmholtz can said
to be committed to the empiricist programme about the genesis of geometry?* by
stressing the importance of the environment in which the species is embedded and its
impact on the species in its acquisition of a particular geometry, Poincaré, by partially
building up on the accounts of Helmholtz, offered a completely novel epistemological
category to account for the foundations of geometry. The new epistemological
category introduced by Poincaré is entitled as conventionalism.

Conventionalism aimed to incorporate the empirical and rational elements to
account for the genesis of geometry; but not in the sense that Kant incorporated them.
For Poincaré, the propositions of geometry were not synthetic a-priori truths, for if it
were the case, then “they would be imposed upon us with such a force that we could
not conceive of the contrary proposition.” (Poincaré, 1905) Here again, the reader is
confronted with the term conceivability of the propositions of non-Euclidean

geometry. For Poincaré, the comprehension of the propositions of non-Euclidean

24 Helmholtz shared his views about the foundations of geometry in his short article On the Origin and
Significance of Geometrical Axioms (1870). The article was included in the book Epistemological
Writings (1921) which was edited and published by positivist philosophers; Moritz Schlick and Paul
Hertz. More about the relevant content about these publications will be discussed in the subsequent
chapters.
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geometry is not only expressed as our ability to reason about them without running
ourselves into any contradiction. He offered many thought experiments in which he
depicted fictive worlds to show that different environmental conditions would compel
us to reinterpret the primitive geometrical terms. This in turn makes possible the
comprehension of different geometries for sentient beings who are equipped more or
less with same kind of sense organs as ours. This, in effect, reflects the impact of
Helmbholtz’s psycho-physiological arguments on Poincaré’s philosophy of geometry.
Helmholtz, before Poincaré, gave similar arguments, in his On the Origin and
Significance of Geometrical Axioms (1870), in which he argued that the different
environmental conditions would inevitably cause species like us to adopt a different
geometry. Neither it was the case that the propositions of geometry were experimental
facts, for “we do not make experiment on ideal lines or circles, we can only make them
on material objects”, (Poincaré, 2011) they were conventions; and our choice of one
particular geometrical over another is carried out in the guidance of the nature. Nature
does not dictate which particular geometry is to be chosen to account for the
phenomena, nature can only be suggestive of which particular geometry is to be
chosen.

Poincaré offered an exhaustive list of empirical and a-priori conditions to
account for the constitutive factors in the genesis of space and geometry. The empirical
conditions for a species to come up with the idea of space and geometry can be divided
into two categories; subjective and objective conditions?. The subjective conditions

are to have a body and mobility, and the objective condition is the possibility of the

25 This division | announced here does not mean that subjective conditions are not objective; it only means that
they are the conditions which is related to the experiencing subject, that is to say, the conditions must be satisfied
by the subject.

63



motion of the invariable figure. Poincaré, first, begins by analyzing our sensations and
how they contribute to the idea of space. He affirms, just like Kant did in his
Transcendental Aesthetic, that “our sensations cannot give us the notion of space”, and
by themselves “they have no spatial character” (Poincaré¢, 1898). But, unlike him,
Poincaré thought that in order for an organism to have an idea of space and in turn be
capable of doing geometry, the organism, first of all, must be capable of moving. He
clearly acknowledges it when he says “For a being completely immovable, there would
be neither space nor geometry.” (Poincaré, 1905, p. 48)

The origins of the idea of space depends upon the reciprocal relations formed
between the subject and the object. There are some external changes, in which it is
possible for the subject to restore the aggregate of primitive sensations through
performing certain locomotor actions, and the idea of space is predicated upon our
ability to compensate for the external changes through respective internal changes. It
is through these compensatory acts and performed displacements that an organism gets
to know the spatial relations and thus forms the idea of space. An organism incapable
of performing certain displacements would not even know the very primitive spatial
relations such as contiguity or distance. This is at odds with the Kantian thesis which
claims that “space must already be presupposed in order for the appearances are
represented as alongside one another” and ordered accordingly (Kant, 2007, B38/B39).
This, however, would be totally meaningless to that organism according to Poincare.
Poincaré, in his Foundations of Geometry (1898), wants to imagine us a hypothetical
person “who possessed but a single immovable eye” (Poincaré, 1898). This man is
completely paralyzed, and one of his eyes is blind. The other is not blind, but he is not
able to move it at his will. For Poincaré, this man would not be able formulate these
mentioned relations and he emphasizes that the origin of the idea of space as a
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framework of relations could be traced back to our capability of moving, and our
capability of retaining the aggregate of primitive relations through performing certain
displacements. Within this context, focusing on an object with our eyes and capable
of following it continuously is an example of a displacement that we make with our
eyes. Since our hypothetical man is incapable of performing these movements, the
changes he spots upon his retina cannot be categorized spatially; because there remains
no possibility for our man to retain his old impressions back.

The idea of the motion of an invariable figure plays an equally important role
in the genesis of the Euclidean geometry and in the birth of the idea of space. Every
change we observe in the nature is either a change of position or a change of state. The
former category is comprised of changes that the solid bodies generally undergo. In
order for compensation to be possible, Poincaré¢ says “the external object in the first
change must be displaced as an invariable solid would be displaced.” (Poincaré¢, 1905,
p. 60). He emphasized the importance of the possibility of free-mobility of objects,
and said “if, then, there were no solid bodies in nature, there would be no geometry.”
(Poincaré, 1905, p. 61). Changes of state, on the other hand, can be exemplified by the
chemical reactions of various sorts, or the displacements of fluids, which cannot be
compensated for by making internal displacements. Since the motion of an invariable
figure was not explicitly stated as an axiom by Euclid, Poincaré considered it to be an
implicit axiom which was used by Euclid to provide a ground for the possibility of
establishing congruence relations. In Euclid’s system almost every proof is predicated
upon the notion of congruence. Helmholtz himself said that “the foundation of all
proofs in the Euclidean method is the proof of the congruence of the relevant lines,
angles, plane figures, bodies, etc.” (Helmholtz, 1977, p. 3) But this axiom, for
Poincaré, is evidently disguised in the fourth axiom of The Elements, which is not
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explicitly stated by Euclid, but utilized nonetheless. The fourth axiom seeks to show
that two figures are congruent if one can be superimposed on top of the other. But
moving a figure in space in such a way requires that the figures conserve their shape
while moving. This, for Poincaré, blends Euclidean geometry with an empirical
element; motion. The alleged purity of the geometrical practice is thus stained by the
introduction of a physical element. In contrast to Kant, Poincaré did not differentiate
between pure and empirical motion as Kant did. For Poincaré, motion cannot be
determined a-priorily, for we do not know a-priori that the motion of objects that we
observe within our environment obey the group of Euclidean displacements; they
could just as well obey to another group of non-Euclidean displacements.

Here, the summit of the thesis of Poincaré is reached, the ultimate empirical
condition necessary for the genesis of geometry is nothing other than the reciprocal
relation formed between the subject and the object. Subject contributes to it through
performing certain internal displacements which are aimed to compensate for the
change caused by the external displacements of an object. Together, they form a
displacement group. This is why Poincaré held that alternative geometries are as
equally conceivable as Euclidean geometries, for in a possible world, the solid bodies
may obey to different laws of displacements than the ones to which have been long
accustomed to observe. Perhaps the most famous thought experiment provided by
Poincaré is his Sphere-world which he gave in his Science and Hypothesis (1903). This
sphere world is in an imaginary world governed by different laws. The properties of

the sphere-world are listed down by Poincaré as follows:

1. The world is enclosed within a sphere
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2. Temperature is not uniform; it gradually decreases as we move away from the
center of the sphere. The absolute temperature is proportional to R?—r?
R = Radius of the sphere
r = Distance of the point considered from the origin

3. Each body has the same coefficient of dilatation, so that each body shrinks or
expands in the same proportion as they move

4. The law of refraction is inversely proportional to R?— r?

5. This means that the path of the ray of lights are not linear, they are circular.

The sentient beings, Poincaré argues, would cultivate a geometry different from
ours; their geometry would be a non-Euclidean geometry. Imagine that two people; P1
and P, are transferred into sphere-world from our world; Py and P>, for so long, have
been habituated to use Euclidean geometry, so the geometry that they have so long
accustomed to is Euclidean geometry. The question is the following: would they notice
the difference between those two worlds? If so, how? First of all, as Poincaré stated,
the world would appear as infinite for those beings, whereas from our perspective, it
appears as finite. The reason is that bodies shrink as they move away from the origin,
and this makes the periphery not approachable for those beings, which would make
them think that their world is infinite. P1 and P> would not so easily be able to detect
the effect of shrinking and expanding through measurement. Because every time they
wanted to measure an object which moves far away from the origin, they would have
to move away from the origin to reach that object and superimpose their measuring
rod on top of that object, so their measuring rods, together with their bodies, would

shrink in the same proportion as the body that they wanted to measure.
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But is not there, then, a way to find out that the world in which P1 and P> are
embedded is different than their previous world? They would have to consider their
tactile and visual impressions in the sphere-world and compare them with that in our
Euclidean world. The realization of the differences between their tactile impressions
in the sphere-world and those in the Euclidean world demands that they make certain
experiments with their bodies or rigid rods. Suppose that P1 and P> are located at the
origin of the sphere. Let P1 make a 90° counter-clockwise rotation to the left and let P,
make a 90° rotation to the right. After each completes his rotation, let them walk ten
steps in a straight line and stop and rotate their bodies back to their initial orientation.
This indicates that they walked away from one another for about twenty steps, stopped,
and reconfigured their bodies back to their initial orientation. Lastly, let each of them
walk ten steps in a straight line again for the last time. This imply that they walk in
parallel lines; for both are separated from one another for about twenty steps, and
walking towards the same direction. Now if they want to measure the distance in
between them, they have to walk towards one another and count their steps. They will
notice that the number of steps that needs to be taken is far greater now, for they both
moved away from the origin about ten steps and their bodies shrank as they moved, so
their steps will be much smaller when they are away from the origin, and in turn the
distance they measure when they move towards one another will be much greater. If
those two people were transported to that world from a Euclidean world, they would
be astonished, for they knew that in the Euclidean world, the parallel lines are
equidistant to one another everywhere. But here, even though they moved parallel to
one another, they see that the distance between them gets larger and larger as they

move away from the origin. So, just like in hyperbolic geometry, the distance between
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two parallel lines in this world does indeed change; the more they move away from
the origin, the more space there becomes in between them.

There are other ways to find out the differences between the sphere world and
our Euclidean world. Through the measurement of the ratio of the circumference of a
circle to its diameter with physical rods, those people would likely to discover that it
Is bigger than 7t; and as the diameter increases the ratio exceeds = more and more. The
reason behind this is simple; as the physical rods move away from the origin, they
shrink, so measuring the circumference with smaller rods means that more rods can
placed on it compared to the number of the rods that could be placed on it if the
diameter were smaller. This would in turn mean that the measurement of the
circumference would yield exceedingly large values compared to the value of the
diameter, and when the ratio is thus taken, this would imply an excess compared to the

ordinary ratio between circumference and diameter.

« Now: Suppose disk is heated at center, with heat dissipating towards edges.
* And: Suppose measuring rods expand when heated.

* Then:
- Diameter reading will be less than
unheated disk (ex. d = 7 units).

- Circumference reading will remain
the same.

e So:c/d>m

- Let R = disk radius, I = length of rod at center.

- Let temperature T(r) be a function of radial
distance r from center: T(r) = R* — r%.

- Let: Length of rod I(r) = l,T(r)/R%

- And: For any circle about center with radius <R,
c/d>m.

Figure 3
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What about the visual impressions of those people in the sphere-world? How would
the visual impressions of P1 and P be different from those they used to experience in
their previous Euclidean world? Is the sphere-world been qualitatively identical with
the Euclidean space? So far, considering only the tactile impressions of P1 and P2, the
space in which they live display the characteristics of the hyperbolic space; in
hyperbolic space the ratio of the circumference to its diameter is bigger than = and the
parallel lines are not equidistant. So the question can be translated to the following:
how different the visual impressions of beings like us in a hyperbolic space?
Helmholtz, in his The Origin of the Geometrical Axioms, offered a detailed explanation
about it. He said that the most distant objects of this space would be seen at a finite
distance to the observer, but the distance between those objects and the observer
appears to be dilated as the observer moves towards these objects. This means that two
physical lines that are remotely placed relative to the standpoint of the observer
appears to be parallel at first sight. But as the observer moves towards these physical
lines, he would see that those lines bulge outwards, and the distance between them is
increased. (Helmholtz, 1977). Considering what Helmholtz said about the visual
estimations of the subject, it is evident in these passage that the visual impressions of
P1 and P2 would also be different than that they had in their native world. Considering
the difference both in their tactile and visual sensations in the sphere-world, can it be
concluded that these people would necessarily adopt the hyperbolic geometry in
explaining the succession of their impressions in that world? It is clear that the solid
bodies that P1 and P> encounters in the sphere world are totally different than the bodies
that they experienced in their ordinary world. Despite the difference in their tactile and
visual impressions, they would still regard the bodies that they encounter in the sphere-
world as solid, for they are able compensate for the external changes through
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performing certain internal changes. But it would be a hasty conclusion to say that they
would adopt hyperbolic geometry, because then “geometry would be only the study of
the movements of solid bodies” (Poincaré, 1905, p. 70). Poincaré stated that
experience could only guide us in our choice of a particular geometry, it could never
dictate to us which geometry to choose among alternatives. This brings us to the role
played by the a priori elements in choosing a particular geometry. Regarding this,
Poincaré wrote:
The object of geometry is the study of a particular "group”; but the general
concept of group pre-exists in our minds, at least potentially. It is imposed on
us not as a form of our sensitiveness, but as a form of our understanding; only,
from among all possible groups, we must choose one that will be the standard,
so to speak, to which we shall refer natural phenomena. (Poincaré, 1905, p. 70)
The a-priori element is the notion of group. Poincaré aimed to provide a group-
theoretical foundations for both space and geometry. Among various groups, we are
particularly interested in displacement groups to obtain the idea of space, and
geometry is nothing other than a particular choice of a displacement group among the
existing alternatives. Poincaré underscored that the notion of a group does not belong
to our form of sensibility; it belongs to our form of understanding. This is important,
for it separates Poincaré’s philosophical position from Kant. For Kant, space is a form
of sensitiveness which precedes all the data provided to us by our senses. Poincaré
thought that our capability of forming a network of relations is not due to our form of
sensitiveness but due to our having the idea of group in the first place. “What
mathematicians call a group is the ensemble of a certain number of operations and of
all the combinations which can be made of them” said Poincaré (Poincaré, 1898, p.
13). Space and geometry owes its existence to these specific operations and the
combinations of those operations that we are able to make. The very idea of the

compensation of our aggregate of sensations, is grounded upon the idea of a

71



displacement group. Our ability to compensate for an external change is taken as the
fundamental group operation. The idea of compensation is not taken from experience,
for experience roughly informs us that the sensations that we feel at t; are retained
after making necessary displacements at t>. But the very idea of making compensatory
acts arises from within, and this alone is the condition of the possibility of classifying
our sensations.

The set of operations Poincaré gives as examples can in fact be explained by
using the language of group theory. To give an example, consider an aggregate of
sensations that | receive through my thumb, A at ti;. Consider that an internal
displacement S takes place at t2, and this makes me feel the same set of sensations with
my index finger at t2. So at t;, my index finger is now feeling the set of sensations A.
Now consider that at t3 an external displacement R takes place and makes my index
finger feels an aggregate of sensations B with my index finger. Now | observe that,
through making an inverse displacement, S’ at ts, | bring my thumb in the place of my
index finger and my thumb feels now the aggregate of sensations B. Thus S’ becomes
the inverse displacement of S. Inverse element is one of the axioms of group theory
and its utilization is nowhere limited to displacements; even in manipulating algebraic
quantities that are totally devoid of spatial significance we use the same group
structure. This is why the idea of group belongs to the form of understanding for
Poincaré. Heinzmann declared it to be an algebraic intuition?® which is applicable to
our sensations and is useful in classifying them.

Even though it was first mentioned earlier as an empirical condition of the

possibility of both space and doing geometry, the idea of the possibility of the motion

26 See, Heinzmann (1999)
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of an invariant figure is not something that we derive from experience directly. It is
true that experience provides us with solid bodies that are invariant under any
displacement, but solid bodies must not be confused with rigid bodies. Rigid bodies
are idealized solid bodies. Solid bodies must be taken as approximations of rigid
bodies. The difference between solid bodies and rigid bodies are made clear brilliantly
by Hans Reichenbach in his Philosophy of Space and Time?’. In brief, Reichenbach
claimed that a rigid body is a solid body whose minute deformations can be ignored.
This definition squares with Poincaré’s intentions. Poincaré was aware of the fact that
the mind intervenes and eliminates those minute deformations present in solid objects
in creating ideal objects; and geometry does not study solid objects, it studies those
ideal objects. This is where the opinions of Poincaré is departed from that of
Helmholtz. Helmholtz thought that the idea of the motion of an invariable figure is
obtained directly from experience. The following passage aims to exhibit the views of
Helmholtz with respect to the origin of the possibility of the motion of an invariable
figure:
If, however, we want to build necessities of thought upon this assumption of
free mobility of fixed spatial structures with unaltered form towards every part
of space, then we must raise the question whether this assumption does not
involve some logically undemonstrated presupposition. We shall presently see
that it does in fact involve such a presupposition--and, indeed, one very rich in
consequences. But if it does so, then every proof of congruence is based upon
a fact taken only from experience. (Helmholtz, 1977, pp. 4-5)
Poincaré, in contradistinction Helmholtz’s views, was aware of the fact that nature can

only provide us with approximately rigid bodies. It is the mind which acts upon these

approximate sensations and convert them into ideal ones. So the possibility of an

27 The complete definition is given as follows: “Rigid bodies are solid bodies which are not affected by differential
forces, or concerning which the influence of differential forces has been eliminated by corrections; universal
forces are disregarded” (Reichenbach, 1958, p. 22) | refrained from providing the original definition in the text for
| believed that certain terms that are used in it; such as ‘differential forces’ and ‘universal forces’, are apt to create
more confusion than to clarify the point | tried to make. These terms will be expounded upon in the next section.
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invariant figure is known a-priori in geometry, it is not attained from experience. This
Is one of the a-priori elements of geometry without which the practice of it becomes
impossible.

Poincaré’s conventionalism allowed him to ridicule the question whether the
space is Euclidean or not. This question, for Poincaré, has no meaning, for one
geometrical structure cannot be true or false, it can only be more convenient (Poincaré,
1905, p. 50). Experience can neither refute, nor verify the Euclidean geometry. Even
if, as perhaps believed by the discoverers of non-Euclidean geometry such as Taurinus,
Gauss and others, one day it will turn out that the parallax of a distant start is different
than it currently is, the practitioners of geometry and science will be faced with two
options; either they will give up on the Euclidean geometry and adopt non-Euclidean
geometry, or they will give up on the law of optics which state that a ray of light
propagates in a straight line and retain the Euclidean geometry. So his conventionality
thesis is centered on the interdependence between physics and geometry. In the light
of new experiments and observations, the current geometrical structure used in science
may require a modification. But scientists will always be free to choose whether the
geometrical structure is going to be modified or the laws of physics are going to be
modified. The choice cannot be dictated to him by experience, experience can only
guide the scientists to choose the simplest and the most convenient geometric structure
to explain the relation between phenomena. Poincaré thought that the scientists will
always favor the Euclidean geometry over the alternatives, for it is the simplest and
the most convenient geometric structure to explain phenomena.

In conclusion, Poincaré renounced Kant’s theory of space and geometry. Space
could not be a priori form of sensitiveness, for a human being incapable of producing
necessary movements would not be able to possess the idea of it. One of the
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constitutive a-priori elements of space? is the idea of group, which pre-exist in us as
a form of understanding. Geometry, cannot be a body of knowledge comprised of
synthetic a-priori truths; for there are alternative geometries which can also be used to
describe the spatial behavior of objects. So there is no necessity in singling out the
Euclidean geometry to describe the relation between phenomena.

Even though Poincaré rejected Kant’s theory of space and geometry, he
nonetheless tried to remain, loyal to the Kantian terminology throughout his works and
sided with Kant on the issue of the content of mathematics. Very similar to Kant, for
Poincaré mathematics is not devoid of an intuitive content. He, too, believed that
mathematics harbored extra-logical elements in it, and thought that it cannot be
reduced to logic. He associated these extra-logical elements with our intuitions just
like Kant. However, the term ‘intuition’ received very different connotations with
Poincaré. The geometrical intuition, in the sense it was used by Kant, is likened to a
sort of intuition which is fallible and unable to provide any certainty. Poincaré shared
in his book The Value of Science the following quote taken from Royce’s article,
Kant’s Doctrine of the Basis of Mathematics: “That very use of intuition which Kant
regarded as geometrically ideal, the modern geometer regards as scientifically
defective, because surreptitious. No mathematical exactness without explicit proof
from assumed principles-such is the motto of the modern geometer.” (Poincaré, 1958.
p. 2) The Kantian style of construction of a spatial magnitude resulting from a

successive spatio-temporal synthesis carried out in the transcendental imagination

28 The notion of group is not the only mental capacity that plays a constitutive role in the genesis of
space. Poincaré lists other powers of the mind which equally contributes to the genesis of space. The
remaining capacities are the power of an indefinite repetition (principle of mathematical induction)
and the idea of continuum. These are often mentioned as intuitions, the idea of group is expressed as
the algebraic intuition, mathematical induction as arithmetic intuition, and continuum as topological
intuition by Heinzmann in his article, Poincare on Understanding Mathematics (1999)
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cannot rigorously account for the continuity of the produced magnitude in the sense
that modern mathematics today demand it. Michael Friedman, in his Kant’s Theory of
Geometry, discussed that the existence of certain points that are used in the
diagrammatic representations of certain propositions becomes problematic if the
Euclid-style constructive procedure is chosen to generate them. The existence of such
points can only be established by using polyadic quantification theory, to which Kant
simply had no access. Friedman also stresses the fact that had Kant known the polyadic
quantification theory, he would not have tried to base the origin of space in our pure
intuition. If it is to be remembered from the second chapter of this thesis, Kant offered
an argument to show that our space is a non-conceptual representation, for the
mereological structure of it does not obey that of concepts, and the representation of a
concept which contains within it infinitely many concepts could not be achieved with
the tools of the logic. His argument was indeed brilliant, for Friedman, in showing the
inadequacy of the monadic logic?® in representing the infinity. Friedman wrote:
We can now begin to see what Kant is getting at in his doctrine of construction
in pure intuition. For Kant logic is of course syllogistic logic or (a fragment of)
what we call monadic logic. So, for Kant, one cannot represent or capture the
idea of infinity formally or conceptually: one cannot represent the infinity of
points on a line by a formal theory [...] If logic is monadic, one can only
represent such infinity intuitively: by an iterative process of spatial
construction (Friedman, 1985, p. 466)
But the discovery of polyadic quantification theory® availed logicians the opportunity

to represent the infinite logically. What is at stake here is actually the representation

of the infinite divisibility, for Kant seemed to have concerned himself with the

2% Monadic logic is a branch of 1st-order logic that involves well-formed formulas constructed from a one-place
predicate. Every well-formed formula involves a single argument about a single object in monadic logic.

30 polyadic logic, in contrast to monadic logic, involves well-formed formulas constructed from a many-place
predicate. Every well-formed formula involves an argument about multiple objects, so the predicates in polyadic
logic are essentially relational predicates, and the quantifiers denote the essential order relations among the
variables that enter into the well-formed formula.
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impossibility of the representation the constituents of a geometric line logically. He
thought that such representation could only be achieved through an indefinite number
of bisection, which is a synthetic activity of the geometer that takes place in our pure
intuition. But modern quantification theory showed that the representation of infinite
divisibility and continuity are in fact possible. Friedman said “what makes this
representation itself possible is precisely the quantifier-dependence of modern
polyadic logic.” (Friedman, 1985, p. 474) Geometric intuition, when it comes to the
representation of infinite divisibility, continuum and differentiability, has the potential
to mislead and to err for Poincaré. Poincareé thus treats the geometric intuition of Kant
as a sensible intuition by affiliating it to the productivity of our imagination, and
accuses it for not being able to provide the rigor the pure intuition, such as the pure
intuition of number3!, can give. Despite all that, he did not seek refuge in formalism
either; he thought that formalizability of infinite divisibility and continuum does not
tell anything about the true character of what continuum is and where its origin lies.
Poincaré, in his Last Essays, stated that we have a direct intuition of continuum??. The

idea of continuum is already pre-supposed by the logician and expressed as an axiom

31 pyre intuition of number, for Poincaré, is essentially a synthetic a-priori intuition. It is the awareness
of our ability to iterate indefinitely. We use this intuition more than often in arithmetic and geometry
when we want to generalize over particulars and prove a certain theorem by using mathematical
induction. This ability, for Poincaré, cannot be reduced to logic, for it represents an infinite number of
syllogisms link together in a series. This intuition is not reducible to logic, for logic cannot provide us
how to pass infinitely many numbers of syllogisms to reach a general conclusion without recurring to
this power of our minds

32 poincaré accuses Hilbert of using this intuition and treating as if it is an axiom of logic in his axiomatic
treatment of geometry. The axiom of order, which was used as an axiom by Hilbert in his Foundations
of Geometry, has its root in our topological intuitions for Poincaré. He wrote the following:

As to the axioms of order, [...] they are true intuitive propositions relating to analysis situs. We see
that the fact that the point Cis between two other points on a line relates to the method of cutting up
one-dimensional continuum with the aids of cuts formed by impassable points. (Poincaré, 1963, p. 43)
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of logic. But the truth is that the axiom is made possible only through the availability

of that intuition.

5.3. Reichenbach and the Relativity of Geometry

Poincaré and Helmholtz strived vigilantly to establish the possibility of conceiving
a different geometry in different environmental conditions. They meticulously strived
for explaining how, on the basis of the data provided to us by our senses, we generate
the web of relations called space whose geometrical character depends solely on the
observed character of those relations. The role that our sensations play in the adoption
of a particular geometry even became more noticeable and gained a pedagogical
importance in the possible worlds that they have created. Within these possible worlds
there were different set of spatial relations observed among bodies which are
completely alien to us. It was first seen with Albert Einstein that that our actual world,
turned out to be as bewildering as those possible worlds that Poincaré and Helmholtz
generated in their thought experiments. Unfortunately, both Poincaré and Helmholtz
could not live long enough to see Einstein’s remarkable achievements. Einstein
successfully implemented Riemannian geometry to our actual world and overthrown
the old Newtonian conception which was built upon the system of Euclid. According
to Einstein’s general relativity theory (GRT), the light is bent when it travels close to
a gravitational region, and the bending of light becomes more noticeable as the
strength of the gravitational field is increased. This bending of light was something
that replaced the old conception of straight line; the straight line in Einstein’s universe

was no more defined as was defined by the Euclidean geometry, and to give the name
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straight to the curvilinear path traced by a ray of light would mean to adopt non-
Euclidean geometry.

Having witnessed the success of physics in describing accurately the spatial
relations between objects by way of non-Euclidean geometry, logical positivists raised
concerns similar to that of Poincaré and Helmholtz about the orthodox conception of
the nature of space and geometry. The general complaint raised by the logical
positivists, such as Schlick, Carnap and later Reichenbach, to Kant’s philosophy of
geometry is its failure to distinguish between pure geometry and applied geometry.
The subject of pure geometry is the study of the logical relations between un-
interpreted primitive terms. So it is a science which is concerned solely with
derivability in accordance with the laws of formal logic. Every term that is used in
pure geometry is devoid of any content; only the relations between these terms are
concerned. Applied geometry, on the other hand aims to select a particular structure
which best fits the data acquired by means of observations and experiments. To
achieve that explanatory success, un-interpreted terms find their meaning in applied
geometry. The terms “point”, “straight line”, etc. are no more devoid of meaning; each
of them is successfully coordinated to a physical object. The distinction between pure
and applied geometry can be boiled down to the distinction between mathematical
space and physical space. Mathematical space is that in which the mathematicians
work with possible spatial structures. They, as it were, deal with hypothetical spaces
and hand them on to physicists whose job is to select among those hypothetical spaces
the one which truly describes the physical space, that is to say, the space described by
physics.

The general concept of space seems to be bifurcated into two distinct
conceptions of space with the logical positivists after Poincaré. The idea of a
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mathematical space is nowhere spotted in Poincaré’s philosophy, and it cannot be, for
Poincaré did not give any credence to the possibility of the conception of the axioms
of geometry independent of our sensations and the relations between sensations. For
him, there is also no such thing as physical space in his philosophy, for there is no true
metric which can we select to depict the spatial relations. Any metric will do the job,
for the choice is always conventional. The introduction of this new dichotomy between
mathematical space and physical is partly due to the success of Einstein’s GRT in
describing and predicting the phenomena and partly due to the work done by Hilbert
in his Foundations of Geometry®®. Einstein’s impact, both as a scientist and a
philosopher, on these philosophers cannot be underestimated. After all, in the era of
positivists, Einstein’s famous dictum; “as far as the laws of mathematics refer to
reality, they are not certain; as far as they are certain they do not refer to reality”
(Einstein, 1921) echoed and taken as a maxim of an utmost value.

Perhaps the most outstanding work in the philosophy of space and time was
carried out by Reichenbach shortly after the reign of positivism over philosophy of
science. Reichenbach shared the tenets of conventionalism and positivism, and
provided a successful mixture of them. Unlike Poincaré, he did not believe that the
choice of a particular geometry is purely conventional to describe spatial relations.
However, similar to Poincaré, he thought that there is also a conventional ingredient

in geometry, and it is the way congruence is defined. The geometry of the physical

3 Hilbert thought that geometry is devoid of a particular content; according to his view, geometry is
nothing but a system of relations between primitives that are not yet defined. In his Foundations of
Geometry, showed that the constructive procedures deemed as necessary by Kant are just auxiliary
tools and therewith not a necessary condition for proving any result in Euclidean geometry. Hilbert
argued that it is because of the deficiency of the axiomatic structure of the Euclidean geometry that
the geometers had to recur to diagrams and visible figures. In a rigorously established axiomatic
system, there would be no need for any figure for Hilbert.
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space can be determined only after the conventional definition of congruence is given;
once the congruence is defined, the problem of the geometric character of space
becomes an empirical problem. To define congruence, a physical object must be
coordinated to the concept of unit length, this is called a metrical coordinative
definition (Reichenbach, 1958, p. 15). Definitions in physics are different than that of
mathematics, for in the former, the definiens is a physical object that do the job of
defining the corresponding concept whereas in the latter, the definiens is generally
another set of concepts that aim to define the target concept. The standard meter in
Paris is coordinated to the concept unit length. This is a great example of a metrical
coordinative definition. The completion of our coordinative definition of congruence
requires the comparison of two unit lengths at different locations. Once the unit length
is physically defined, what remains to be done is to define how the rod should behave
when it is transported from one region to another. The definition of a rigid body is then
predicated on the definition of the behavior of our measuring rod during its transport.
The question that needs to be asked at this point is this: would not it suffice to consider
our factual observations made distinctly at different places to conclude that the same
rod is congruent to itself in different places? Reichenbach answers this question
negatively; we cannot conclude from observed facts that two rods are congruent to one
another at different places; to assume that they are always equal in length would only
be an additional convention. But he also states that this conventional definition can be
empirically verified through comparing the length of the rods measured at different
places. This is why, Reichenbach stated that "one can say that the factual relations
holding for a local comparisons of rods, though they do not require the definition of
congruence in terms of transported rods, make this definition admissible".
(Reichenbach, 1958. P. 17) In Poincaré’s sphere-world gedanken, it was shown that
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the same rod turned out to be self-congruent across transportation, for there were no
noticeable change in its shape during its transport. However, the comparison of the
measurement of certain ratios (such as ) has shown that the shape of the rod must
have been altered during its transport. This is why we have to make, prior to the
observations, a metrical coordinative definition; and this is why, for Reichenbach, the
definition of congruence is “not a matter of cognition, but a matter of definition.”
(Reichenbach, 1958. P. 17).

The aim of a coordinative definition of congruence is to eliminate universal
and differential forces, and establish the possibility of empirically determining the
geometry of the physical space. Universal forces are forces which affect all materials
in the same way. Going back to Poincaré’s sphere-world, the uniform increase in the
temperature is an effect produced by a universal force. Each body, in that sphere-
world, is affected by the temperature equally, and this was expressed by each body
having the same coefficient of dilatation. The local comparison of the lengths of the
transported rods in sphere-world were not noticeable, this is why Reichenbach stated
that it is “fundamentally impossible to detect changes that were caused by universal
forces.” (Reichenbach, 1958, p. 16) A coordinative definition of congruence aims to
eliminate universal forces, this is called, by Rudolf Carnap, the principle of the
elimination of the universal forces. (Reichenbach, 1958, p. vii) This is the exact place
where Reichenbach criticizes Poincaré's conventionalism; for Reichenbach, there is a
disturbing element of arbitrariness in our choice of a particular geometrical structure
in Poincaré's conventionalism, and he wanted to eliminate that point of arbitrariness
by introducing his principle of the elimination of the universal forces. Once the
universal forces are not admitted, a unique geometrical system can be chosen to
describe our observations. Carnap says: “if this principle is accepted, the arbitrariness
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in the choice of 0 a measuring procedure is avoided and the question of the geometrical
structure of physical space has a unique answer.” (Reichenbach, 1958, p. vii)
Differential forces, on the other hand, are forces which does not affect every material
in the same way; different materials respond differently to differential forces. These
forces also must be eliminated to reach the idea of rigid body. For it corrects the minute
differences in each body produced by various internal and external forces. Through
the elimination of the differential forces, we no longer consider those minute
deformations in bodies as a change in the geometrical structure of geometry. If we do
not eliminate differential forces, then we would have as many geometries as there are
bodies which reacts differently to same forces (such as heat). This would unnecessarily
overcomplicate the task of the physicists, so by definition, all differential forces are
set to zero.

In conclusion, the determination of the geometry of the physical world depends on
the coordinative definition of congruence, until then, the physical geometry is
indeterminate. “The geometry of the physical space is not an immediate result of
experience, but depends on the choice of coordinative definition of congruence.”
(Reichenbach, 1958, p.19) The criteria for selecting the most adequate definition of
congruence is the same criteria that Poincaré embraced; simplicity, and convenience.
However, Reichenbach argues that the scientist will not always select the theory which
involves the simplest geometry, but which involves overall the simplest structure. This
is what Einstein did in his GRT, he chose the simplest coordinative definition of
congruence, not the simplest geometry to describe the relations between phenomena.

Reichenbach’s own unique conventionality thesis implies that one is free to
choose whatever geometrical structure one wishes to describe the physical space if
universal forces are admitted. This analysis directly lead us to the relativity of
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geometry. Going back to sphere-world experiment again, the same set of observed
relations can be explained in two different ways Let Go = Euclidean Geometry, G1 =
Non-Euclidean Geometry, F = Universal Forces that causes materials to shrink or
expand. We can either say that the geometry of the sphere-world is Euclidean and there
are universal forces which affects all the materials in it (Go + F), or we can say that the
geometry of the sphere-world is non-Euclidean and there are no universal forces in it
(Gy).

The relativity of geometry made Reichenbach renounce the Kantian thesis that
the Euclidean geometry is synthetic a-priori. He did not believe that the Euclidean
geometry is epistemologically prior to other geometries. However, it is possible to
retain Euclidean geometry in every scenario, all we have to do is to choose between
the set of possible coordinative definitions of congruence, the one which includes the
Euclidean geometry. He listed the reasons which predisposes us to cling onto the
Euclidean geometry in every possible scenario. | entitle these reasons as visual
preferability and local soundness®.

Notwithstanding the success of these criticisms of Poincaré and Reichenbach,
and how they rendered Kant’s philosophy of geometry obsolete, there were other
group of philosophers; P. F. Strawson and Gottlob Frege being important
representatives, who tried to rescue Kant’s philosophy from these death-blows.
Strawson’s thesis was centered on the view that even though Kant’s philosophy of
geometry cannot truly describe the space described by physics, it still necessarily and

universally holds for the space of human visualization and for local space. In essence,

34 By local soundness, | mean the soundness and the validity of the geometry within a confined
region of the entire universe.
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he narrowed down the scope of Kant’s theory of geometry to encompass only the
visual and local space.

To begin with, it must be noted that Strawson seemed to have endorsed the
existence of the physical space. He clearly stated that we have a conception of physical
space in his Bounds of Sense. He also went further and claimed that the space talked
about by Kant in The Metaphysical Exposition of Space is actually the physical space.
He wrote:

| have already remarked that the space declared to be "essentially one" can only

be understood to be physical space, the space in which there stand, mutually

related, public physical bodies conceived of by us as objects distinct from our
perceptions of them.

He also affirmed that the geometry studied by the astronomers and physicists were
different than the Euclidean geometry. His following words suggests that he was aware
of the discrepancy between the local and global properties of space:

The testing of Euclidean geometry by observation and measurement shows its

theorems to be verified with an acceptable degree of accuracy for extents of

space less than those which astrophysics is concerned; but for astrophysics

itself, a different physical geometry, inconsistent with Euclidean, is found to

accommaodate observation and measurement (Strawson, 1966, p. 286)
The Euclidean geometry holds true in small areas. The curvature of the space cannot
be detected within these small areas, therefore the deviation from Euclidean space
cannot be detected in small areas. The necessary corrections that must be made to make
possible the transition from the Euclidean and non-Euclidean geometry also lie within
the errors of observation, thus they are not realizable.

In addition to the postulated dichotomy between mathematical geometry and
physical geometry by positivists, he postulated the existence of another kind of
geometry, which he calls phenomenal geometry, which is distinct from physical

geometry, and known a-priori. The phenomenal geometry is the geometry of the visual

85



images. “The visual imagination cannot supply us with physical figures, but it can
supply us with phenomenal figures” said Strawson. (Strawson, 1966, p. 282). Strawson
said that this third option was completely overlooked by positivists. He wrote:

What we have had to notice is that there is a third way, different from either of

these, which is also possible and which the positivist view neglects [...]

Euclidean geometry may also be interpreted as a body of unfalsifiable

propositions about phenomenal straight lines, circles, etc. (Strawson, 1966, p.

286)
Strawson said that we can never “see” or “picture” two straight lines between two
points. If there are two lines between two points, at least one of them has to be curved.
Since in non-Euclidean geometry, two straight lines can be drawn between two points
(specifically, in Riemannian geometry), then it seems that we can form Euclidean but
not non-Euclidean pictures. In short, Strawson’s phenomenal geometry strived for
accommodating Kant’s theory of geometry with the advancements in physics and
mathematics. A geometry is phenomenally true only insofar as it can be interpreted by
virtue of phenomenal figures. This is why the Euclidean geometry is necessarily and
universally true; for every geometric concept is interpreted according to the
phenomenal items that corresponds to those concepts. The postulates of the
phenomenal geometry are phenomenally analytic (Strawson, 1966, p. 286), that is to
say, they are true in virtue of the meanings attached to the concepts that they contain,
and those meanings are themselves phenomenal, or visual. To give an example,
whenever | think of the concept of straight line, the phenomenal item, the picture of a
straight line, is analytically contained in it. So there is a necessary identity relation
between the concept and the picture which makes my phenomenal interpretation of the
given concept necessarily true.

To what extent Strawson’s modification of Kant’s theory of geometry can said

to be successful? There are many gaps that needs to be filled in Strawson’s account. It
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must not go unnoticed that Strawson did not said anything about the tri-partite relation
between the phenomenal geometry, the physical geometry, and the mathematical
geometry. Reichenbach tackles the issue of visual a-priori in his The Philosophy of
Space and Time (1958). The following words brilliantly summarizes Reichenbach’s
take on the issue of visual a-priori:
The theory contends that an innate property of the human mind, the ability of
visualization, demands that we adhere to Euclidean geometry. In the same way
as a certain self-evidence compels us to believe the laws of arithmetic, a visual
self-evidence compels us to believe in the validity of Euclidean geometry. It
can be shown that this self-evidence is not based on logical grounds. Since
mathematics furnishes a proof that the construction of non-Euclidean
geometries does not lead to contradictions, no logical self-evidence can be
claimed for Euclidean geometry, This is the reason why the self-evidence of
Euclidean geometry has sometimes been derived, in Kantian fashion, from the
human ability of visualization conceived as a source of knowledge.
(Reichenbach, 1958, p. 32)
Reichenbach states that our subjective preference for Euclidean geometry stems from
the epistemological function of visualization (Reichenbach, 1958, p. 34), which is a
function of utmost importance in terms of the psychological and pedagogical utility
that it brings. But this, for Reichenbach, does not violate the principle of the relativity
of geometry, for every geometry which can be mapped onto one another must be

treated epistemologically on par with each other®®. Because of the epistemological

35 Reichenbach states that as long as two spaces are topologically equivalent, the mapping can be
done. One cannot, however, map a toroidal space or a spherical space to Euclidean geometry without
modifying the law of causality accordingly. In that scenario, an observer who is actually moving on the
surface of a torus would periodically confront the same set of impressions after covering certain
amount of distance. This happens because the observer goes through the same regions over and over
again due to the fact that the constant positive curvature of toroidal and spherical spaces forms loops.
If the observer wants to retain the Euclidean geometry, he must change, along with the laws of physics,
the law of causality. For that space seems to display a causal anomaly which is completely at odds
with the classical (Kantian) conception of causality according to Reichenbach. So, a Kantian would be
having a very hard time explaining the causal relations on that space, for certain regions which are
separated by a certain distance would display identical events when the classical conception of
causality is preferred. A Kantian’s overall system would be in the form of Go + F + A, where ‘A’ refers
to a newly introduced principle which goes by the name of the pre-established harmony. This pre-
established harmony aims to explain “the instantaneous coupling of distant events.” (Reichenbach,
1958, p. 65)
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function of visualization, we generally prefer the Euclidean geometry by setting the
geometry to Euclidean, and then, according to our observations and experiments,
introduce the existence of universal forces. So our overall system, if we stick with the
Euclidean geometry, will always be in the form of Go + F; in which F = 0 or F # 0,
depending on the results we obtain from experiments and observation.

Is it true that we can only visualize the Euclidean geometry? If the answer
provided to this question is negative, then Strawson’s attempts to rescue Kant’s
philosophy of geometry inevitably fails. Can human beings visualize non-Euclidean
geometries? To recall what was written in the chapter where the views of Helmholtz
and Poincaré are discussed, the answer that they have provided to this question seems
to be positive; both of them thought that our visual impressions would change in
different environments where bodies succeed one another according to different laws.
This, in a sense, would compel us to adopt a different geometry, which would in turn
compel us to associate different images with different geometric concepts. But they
did not tackle the issue of visualization in a great detail. Reichenbach attempts to
provide more satisfactory answers than his predecessors with regard to the possibility
of visualizing non-Euclidean geometries. To do this, he begins by determining the
properties of the visual space.

Visualization is “the reproduction of the particular object in the form of image”
(Reichenbach, 1958, p. 38). The attainment of the precision of the image requires more
effort on part of the subject. So Reichenbach seems to divide the ability to produce an
image into distinct levels. When, for example, we attempt to visualize a particular
triangle, or any other geometric object, a blurred image somehow emerges in our mind.
This image lack the vividness and particular details. Reichenbach calls these images
schematic images (Reichenbach, 1958, p. 38). The schematic images lack particular
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details and exact metrical properties, but have general properties that belong to the
object. The exact length of the sides of a triangle, or the angle between its vertices,
cannot apprehended precisely in the imagination. Nonetheless, we never fail to
apprehend the number of its sides. The former stage is capable of representing the
topological properties® but not the metrical properties of the figures, that is to say, it
is able to provide us with a rough sketch of the object but it fails to provide us with the
exact quantitative relations among the parts of the objects. Reichenbach calls this
particular function of the imagination which is able to produce schematic images
image-producing function (Reichenbach, 1958, p. 39).

The second stage of the visualization is called the normative function of
visualization (Reichenbach, 1958, p. 39), and for him, it is the stage which is
philosophically important. The normative function of visualization is used to make
clearer the relations between the objects that | imagined in the former stage. Compared
to the images provided to us by the image-producing function, the normative function
is able to provide clearer images and is able to correct the drawings we performed in
our imagination in the first stage. The rough sketch that is generated in the former
process is transformed into an exact diagram which is capable of representing the
relations between the images more accurately. When | am asked, for example, to count
all the diagonals in a pentagon, | need to pay considerable attention to the figure | am

constructing in my head, since it is not the same thing as counting the sides of a

36 Topological properties of a figure are the properties which do not involve any quantitative measure.
Poincaré tends to call these properties qualitative properties, and the area of mathematics which
studies these qualitative relations is analysis situs. (Poincaré, 1963, p. 25) The topological relations
between objects include, adjacency, in-betweenness, connectivity, etc. Poincaré states that topology
precedes geometry epistemologically, for it is possible to disregard the metric properties of a figure
and study those qualitative relations, but it is impossible to disregard those qualitative relations and
study the metrical relations. (Poincaré, 1963, p. 26)
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triangle. In the rough sketch, which is nothing but the output of the image-producing
function, certain properties of the image may be wrong, that is to say, | may find the
number of diagonals that can be drawn inside the pentagon less or more than its true
value. But when the normative function takes over, the total number of diagonals in a
pentagon can be apprehended clearly. Even the normative function does able to
provide us with more exact images, it does not have the power to represent accurately
the exact metrical relations between objects since measurement has nothing to do with
our sense of sight. Every measurement is carried out with measuring rods in the
physical space.

Reichenbach claims that “Kant’s synthetic a-priori intuition springs from the
normative function of visualization” (Reichenbach, 1958, p. 39), and that this function
alone singles out the Euclidean geometry from other geometries. The a-priority of
visualization is explained as the conformity of the imagination to certain tacit
conditions when producing an image. These presumed tacit conditions are the norms
imposed upon the figures that we draw, therefore the normative function, according to
these presumed tacit conditions, directs and restrains our imagination so as to provide
images that obey certain visual characteristics. As a consequence, visual
impossibility/possibility is related to these tacit conditions, and these tacit conditions,
in turn, are related to the generally preferred topological structure in accordance with
which our imagination produces images. When we are asked, for example, whether
there exists a surface with one side, we hastily say “no”. But “every student of a lecture
on topology has taken a strip of paper, twisted around itself, pasted it together in the
form of aring” (Reichenbach, 1958, p. 41) to form a one sided surface. So if we modify
the underlying topological conditions which we impose upon our scenery of
imagination as norms, we can turn impossible into possible.
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The Euclidean geometry is singled out among alternative geometries in a
similar fashion. The particular Euclidean objects that we construct in our imagination
are constructed in a space which has a determinate topological structure; and this
topological structure act as a norm in producing images. Consider the following
question: “Do parallel lines diverge?”” Ofthand, we must say “no”, if we consider the
surface on which these lines are constructed as flat. But if we change the surface on
which these two straight lines are constructed, the answer to this question can in fact
turn out to be positive. There seems to be no necessary relation between the image and
the concept in Reichenbach’s treatment in contradistinction to the treatment of Kant
and Strawson. Kant thought that the image is necessarily connected to the concept
through a schema, and Strawson thought that images are necessarily contained under
the concepts. But for Reichenbach, the connection between the image and the concept
iIs flexible and guided by certain tacit conditions which can be modified. These tacit
topological conditions, which act as a norm in producing an image, are implicitly
presumed in the conceptual elements of the particular geometrical structure. These
conceptual elements are the postulates, definitions and axioms. What we are doing is
developing a function which is habituated to associate certain images and rules of
construction with the conceptual skeleton of the geometry that we are practicing. In
support of this view, Reichenbach wrote:

The merit of visualization consists only in the fact that it translates the logical

compulsion of Euclidean geometry into a visual compulsion. The normative

function of visualization is revealed as a correlate of the logical compulsion
and achieves the same results by means of the elements furnished by the image-
producing function as the logical inference does by means of the conceptual

elements of thought. (Reichenbach, 1958, p. 42)

Geometrical practice seems to be essentially logical for Reichenbach, a view which is

not shared by Poincaré. The diagrams are useful in aiding us to carry out the proof

91



which is essentially logical in nature. The normative function of the visualization is a
function whereby we associate images with logical concepts; this in turn help us to
complete the proof through using diagrams.

Even though Poincaré and Reichenbach did not agree on the content of
geometry, they agreed on the possibility of the association of different images with
different concepts, which go against the central doctrine of Kant’s theory of geometry.
For them, non-Euclidean geometries are as equally plausible as the Euclidean
geometry. For Poincaré, different adaptive conditions would compel the organism to
adopt a different geometry. Similarly, for Reichenbach, visualization of the Euclidean
geometry is a result of a biological habit (Reichenbach, 1958, p. 82), and he believed
that we can gradually break this habit. This habit of ours resulted from our everyday
experience of the behavior of solid bodies. If the solid bodies behaved differently, we
would be able to strain the normative function of visualization to be able to adopt a
new way of imagining and visualizing geometric relations. In brief, what is actually
needed is an emancipation from the congruence relations that belong to our native
geometry. If we were immersed in a non-Euclidean environment, we would at first
resisted to redefine the coordinative definition of congruence and interpret those
changes as an actual change in the shape of an object. But after a while, we would no
longer perceive those changes as a change in the shape of an object, but rather as a
change in our perspective. Reichenbach states that “the moment we no longer see any
change in the transported object, we have accomplished a visual adjustment.
(Reichenbach, 1958, p. 54)

In the light of these discussions, Reichenbach rejects the view that there exists
a visualization which is static and not changing according to different environmental
conditions that produces different visual sensations in an organism. It cannot be the
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case that there existed a pure form of visualization which is necessarily Euclidean as
claimed by Kant. The visualization of the Euclidean space was cultivated as a result
our observations of rigid rods and light rays. It was cultivated over the course of the
biological history of our species as a developmental adaptation. This is why he called
it a biological habit and implicitly stressed the role played by evolution. In fact, similar
views were shared by Poincaré in his discussions about the possibility of the adaptation
of different geometries. One of the dominant force that is likely to have shaped
Poincaré’s conventionalism is the theory of evolution. One of the examples provided
by Poincaré is centered around the role of adaptation and inheritance in the acquisition
of the idea of space. In this example, Poincaré raises important questions as to whether
the origination of the idea of space truly happen on an individual level, or it is a fruit
which is a result of a long chain of continuation of habitual movements of the members
of a race and inherited throughout the biological history of the race. The example given
by Poincaré is displayed as follows:
It will be seen that though geometry is not an experimental science, it is a
science born in connexion with experience; that we have created the space it
studies, but adapting it to the world in which we live. We have chosen the most
convenient space, but experience guided our choice. As the choice was
unconscious, it appears to be imposed upon us. Some say that it is imposed by
experience, and others that we are born with our space ready-made. After the
preceding considerations, it will be seen what proportion of truth and of error
there is in these two opinions. In this progressive education which has resulted
in the construction of space, it is very difficult to determine what the share of
the individual is and what of the race. To what extent could one of us,
transported from his birth into an entirely different world, where, for instance,
there existed bodies displaced in accordance with the laws of motion of non-
Euclidian solids-to what extent, | say, would he be able to give up the ancestral
space in order to build up an entirely new space? (Poincaré, 1914, pp. 115-116)
Reichenbach rejects the idea that there exists a faculty in us, given completely prior to

any experience and is the condition of the possibility of generating images. He rejects

that there is a separation between the form of the image and the content of it. The form,
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for Reichenbach, is not over and above the content, which is nothing but the displayed
visual qualities of an object, such as its color or brightness. In support of this,
Reichenbach wrote “visual forms are not perceived differently from color or
brightness. They are sense qualities, and the visual character of geometry consists in

these sense qualities.” (Reichenbach, 1958, p. 84)
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CHAPTER 6

CONCLUSION

My thesis aimed to provide an answer whether it is possible to reconcile Kant’s
theory of geometry with non-Euclidean geometries in the light of the criticisms and
modifications, a sufficient portion of which was displayed above. And the answer that
thesis gives to that question is negative; it seems not possible to reconcile Kant’s
theory of geometry with non-Euclidean geometries. Kant’s theory of geometry cannot
embody non-Euclidean geometries even if undergoes appropriate modifications.
Strawson, Frege and others have tried to rescue Kant’s theory of geometry by reducing
the scope of its validity. They have tried to show that Kant’s theory that geometry is
synthetic a-priori is still tenable in the face of non-Euclidean geometries, for they
thought that the Euclidean geometry is still necessarily applicable to our visual space,
even if it does not explain the structure of the world studied by physicists and scientists.
This modification, however, did not stand a chance against the criticisms of Helmholtz,
Poincaré and Reichenbach, for both of them thought that it is possible to visualize
other geometries in different environments. As a philosopher who did not witness the
revolutionary turns in logic, mathematics, physics and biology, Kant’s current
philosophical stance towards the nature of geometry must not be accused of its
ignorance as to these matters. Had he known the theory of evolution, he might have
contemplated the possibility of a dynamic and evolving intuition, which is capable of

adapting itself to the environment. Had he known, similarly, the new logics discovered
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in the 19" and 20™ Century, the discovery of non-Euclidean geometries, etc., he would
have reconsidered his philosophical stance towards the nature of geometrical
construction. He simply lack all the valuable information that would have helped him
to revise his own philosophical position and his transcendental idealism.

Helmholtz, Poincaré and Reichenbach tried to show that the synthetic a-priori
nature of geometry is not tenable under these new developments mentioned above.
They both stressed the importance of the role played by the empirical elements in the
formation of a geometry; the possibility for a species to develop new biological habits
In new environments is a great example of it. According to Kant, this cannot be
possible, for the determination of space cannot be a function of the environment. The
character of the space is invariant under any different environmental context according
to Kant. Even though Poincaré and Reichenbach differed in their views as to role
played our minds in the formation of geometry, they agreed that it nevertheless is one
of the conditions of the possibility of geometry as a science proper, but not in the sense
that Kant had thought. Poincaré sought the role played by our minds in the formation
of geometry in other mental powers that belong to our form of understanding;
Reichenbach in logic, but what is common in both is that they both reduced the
normative mental operations carried out in the alleged transcendental imagination to
psychological operations. This reduction in turn rid the normative constructive
procedure that takes place in the imagination of its epistemological import. So the
transcendental idealism of Kant is reduced to mere psychologism, and the normativity
found in the construction of a geometric entity to a habit developed over time. This is
why the term ‘intuition’ received very different connotations after Kant in the light of
these advancements in both pure mathematics, physics and biology. Poincaré, in Janet
Folina’s words, “attempted to reconceive, or reconfigure intuition” (Folina, 2018, p.
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165). For Poincaré, intuition become something psychological, it became a faculty
which enabled us to “to see the end from a far” (Poincaré, 1958, p. 22). It does not and
cannot provide us with the expected rigor that Kant thought that it provided, it could
only be seen as a fallible tool of discovery. For Reichenbach, on the other hand, the
term pure intuition simply means ‘pure visualization’, which is some sort of a
‘biological habit’, developed as a “result of an adaptation of a psychological capacity
to the environment.” (Reichenbach, 1958, p.82). The appropriate modifications of the
term ‘intuition’ is a way of renouncing the thesis that our pure intuition of space
provides the ground of the necessity and universality of the propositions of geometry.
This is due to the fact that Kant’s theory of geometry is modally connected to his
theory of space, and, as was clearly argued in the conclusion part of the second chapter,
as the pillar geometry falls, so must the pillar of space. I thereby conclude that Kant’s
overall theory of space and geometry is rendered obsolete in the light of these new

advancements in sciences and their philosophical consequences.
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APPENDICES

A. TURKISH SUMMARY / TURKCE OZET

Bu tez Oklid-dis1 geometrilerin Kant’in matematik felsefesi ile
uzlagtirilabilirliginin - miimkiinatin1  konu almistir. Tezimde Kant’in geometri
kurammin Oklid-dis1 geometrileri icerecek bir kuram olamadig ve Kant’in sistemi
iizerinde yapilan hi¢bir modifikasyonun Oklid-dis1 geometriler ile Kant’mn sistemini
uzlastirmaya muktedir olmadigi gosterilmeye c¢alisiimistir. Uzlastirma sézcligiiniin
kapsami, OKklid-dis1 geometrilerin varligmmn Kant felsefesi igin bir tehdit teskil
etmemesi ve hem Oklid-dis1 geometrilerin hem de Kant’in geometri kuraminin
birbirlerine sorun teskil etmeden ayn1 anda var olabilmelerini igerir. Varilan sonuglari
temellendirmek amaciyla tezin ilk dort bolumiinde Kant’in geometri kurami ve bu
kurami olusturmasini gerektirmis olan tarihsel ve felsefi problemlere detayli bir
sekilde deginilmistir. Dordiincii bolimde Oklid-dis1 geometrilerin kesfi ve son
boliimde Helmholtz, Poincaré ve Reichenbach gibi diisiiniirlerin elestrileri 1s1ginda
Oklid-dis1 geometrilerin Kant’in geometri kuramu iizerindeki etkileri arastirilmistir.

Kant icin geometri uzayin ozelliklerinin sentetik ve a-priori belirlenimidir.
Geometrik bilgimiz a-priori’dir ¢iinkii deneyimden tiiretilmis bir bilgi tiirii degildir.
Geometrik bilgimiz sentetiktir ¢linku higbir kavramsal analiz bize analize tabi olan
kavrama iligkin tlm 6zellikleri veremez. Kant’ tan 6nce geometrik bilgimizin igerigine
ait yaygun gorilis onun kavramsal bir etkinlik olduguna dairdi. Rasyonalist gelenekten
gelen Leibniz ve Wolff, geometrik dénermelerin, o 6nermeleri olusturan kavramlarin
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analizinin yapilarak gosterildigini diislinliyorlardi. Bu filozoflar i¢in benim {i¢genin
ozelliklerine iliskin her bilgim tiggen kavramini analiz etmemle ortaya ¢ikiyordu. Kant
Oklid’in Elemanlar’inda gecen kanit prosediirlerini baz alarak geometrik bilginin bu
tarz salt kavramsal analizle miimkiin olamayacagi goriislinii ileri siirmiistiir.
SOzgelimi bir liggenin i¢ agilarinin toplaminin iki dik agrya esit oldugunu bulmak
istersek bize verilen iiggen kavramimin Otesine gitmemiz gerekir. Biz Uggenin ig
acilarini bulmak i¢in dncellikle bir liggen ¢izerek baslariz. Fakat asla bu figiirle sinirlt
kalmayiz. Bize verilen tliggenin tabanini uzatir ve o taban tizerinde toplamlari iki dik
acinin toplamini veren bir i¢ ve bir dig a¢1 yaratiriz. Sonra bu dis aciy1 kesecek ve dig
acinin komsusu olan i¢ aginin gordiigii kenara paralel olacak sekilde bir diiz ¢izgi daha
cizeriz. Bu sayede elde ettigimiz yeni dis aginin i¢ agilardan birine esit oldugunu
buluruz. Bu sayede, bir kagidin {izerinde ya da imgelemimizde olusturdugumuz ve
genislettigimiz figiirler tizerinden akil yiiriiterek gostermek istedigimiz dnermeyi, yani
bir iggenin i¢ agilarinin toplaminin iki dik agiya esit oldugunu gostermis oluruz. Bu
bakimdan geometrik bilgimiz sentetik bir bilgidir. Clinkii asla bize ilk basta verile
ticgen figiri ile sinirh kalmaz tasimlamamiz; biz yeni figiirler ve yeni bagintilar insa
ederek gostermek istedigimiz seyi gostermeye girisiriz. Geometri bu sekilde farkli
sekillerin uzay goriimiiz i¢indeki sentezi ile olanakli olan bir bilimdir.

Geometriye iliskin sententik a-priori bilgimizin olanakliliginin kosulu uzayin
saf bir gorli formu olmasindan kaynaklanir. Uzay ve zaman Kant icin ar1 birer sezgidir
ve deneyimimizin olanakliligmin kosuludurlar; objeler bize bu ar1 gorii formlar
olmadan verilemez ve bu ar1 gorii formlarimiz objelerin birbirleri ile uzamsal olarak
iliskilendirilebilmelerinin ve siralanabilmelerinin zeminini olustururlar. Kant dncesi
diisliniirler uzayin zihinden bagimsiz oldugu goriisiinii benimsemislerdir. Kant dncesi
uzayin kokenine iligkin yapilan felsefi tartigmalar iki baslik altinda toplanabilir; uzayin

104



iligkisel olduguna dair goriisler ve uzayin mutlak olduguna dair goriisler. Leibniz
uzayin aslen seyler arasindaki iliskilerden oldugu goriisilinii savunmustur. Newton ise
uzayin mutlak oldugunu ve seylerden bagimsiz olarak var oldugunu savunmustur. Her
iki goriiste Kant i¢in yanlisti ¢iinkii her iki goriiste uzayin zihinden bagimsiz bir
gerceklik oldugu kanisina dayaniyordu. Kant ile beraber uzayin ideal ve zihne bagl
birer gerceve oldugu goriisii ortaya ¢ikmigtir. Kant’a gore uzay diisiinen bir bireyden
bagimsiz olarak kendi icinde var olabilen bir nen olamaz. Uzay bizim kendi
tasarimimizdir. Uzay bir nevi bir gozliige benzetilebilir. Biz bu gozliikler olmadan ne
gorungdler ile temas halinde olamayiz; bizi goriingiilerle dogrudan ve dolaysiz bir
sekilde temas haline sokan sey bu gozliiklerdir. Biz asla bu gozlikleri ¢ikarip
gercekligin kendi i¢inde nasil oldugunu da bilemeyecegiz; ¢evremizde olan biten
herseyi bu gozliiklerde bakarak algilamak zorundayizdir. Kisacasi uzay a-priori bir
gergevedir ve gorilingiilerin bize verilebilmesinin olanakliliginin kosulunu olusturur.

Geometri bu saf uzay gorimdazin icerisinde belli birtakim insalar yaparak
stirdiirdiiglimiiz bir etkinliktir. Saf gorii formumuzu ¢esitli bir takim ingalarla tahdit
ederek belli geometrik objeler olustururuz. Geometrik bilgimizin igerigi bu gori
formunda insa edilmis objeler ve bu objeler arasindaki iliskileridir. Geometrik bilmin
onermelerin zorunlulugu ve evrenselliginin miimkiinatinin kosulu bu bize a priori
olarak verilen uzay goriimiizdiir, eger bu iginde bir takim insalar yaptigimiz ¢ergevenin
kendisi a priori olarak bizlere verilmeseydi geometrik edimimizin kendisi de asla a
priori olamayacakti.

Kant uzay gorimuzin belirlenimin zorunlu ve evrensel olarak Oklidyen
oldugunu savunmustur. Oklit geometrisinin &nermeleri kendilerini akla bir
zorunlulukla dayatir ve Oklid-dis1 geometrilerin kavranabilmesi Kant’m felsefesi
icinde miimkiin degildir. Kant Oklid-dist geometrilerin imkansizliginin  bu
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geometrilerin kavramlarinin saf goriide ingasinin miimkiin olmamasindan &tiirii
oldugunu tartigir. S6z gelimi birbirlerine paralel ve belirsizce uzatilmis diiz birer ¢izgi
bir alan kapar 6nermesi bir imkansizliga isaret eder. Fakat bu 6nermenin imkansizligi
mantiksal bir imkansizlik degildir; ¢linkii biz bu Onermeyi degili ile birlikte ele
aldigimizda asla bir celiski yarattigin1 goremeyiz. Onermenin degili géz &niine
alindiginda, degilinin de orjinali kadar mantiksal olarak imkanli olabilecegi g0z
onlinde bulundurulmalidir. Hem orjinalinin hem de degilin mantiksal agidan es
diizeyde olanakli olmalarinin sebebi diiz ¢izgi kavrami ne kadar analiz edilirse edilsin,
birbirine paralel ve belirsizce uzatilan iki diiz ¢izginin kapayabilecegi bir figiiriin
imkansiz oldugunu bize gdstermez. Onermede dile getirilen figiir, ancak diger bir
takim daha primitif olan figUrlerin bir araya getirilmesi ile bir sentez sonucu meydana
getirilebilir. Bu 6nermede bahsi gegen kavramin imkansizligi Kant’a gére bu figurt
olusturabilecek sentezin imkansizligi ile alakalidir. Bu bahsi ge¢en kavrama duyumda
(ve ya goriide) bir obje veremememizden kaynaklanir. Sonug olarak Oklid-disi
geometrilerin imkansizlig1 mantiksal bir imkansizliga isaret etmez, goriisel/sezgisel
bir imkansizliga isaret eder.

Helmholtz, Poincaré ve Reichenbach gibi filozoflar, Oklid-dis1 geometrilerin
duyumsal bir igerige sahip olabilmesinin imkansiz olduguna dair goriisii reddederler.
Bu filozoflar farkli fiziksel kosullarin icinde bulundugumuzda, igerisinde
bulundugumuz diinyayr ve bu diinyanin ig¢indeki objelerin arasindaki iliskileri
betimlemek i¢in farkli geometrik yapilar1 benimseyecegimizi sOylerler. Yani bu
iliskilerin betimi icin bir siirii aday geometrik yapi arasindan secilen Oklidyen
geometrinin asla ve asla diger geometrik yapilara karsi epistemolojik olarak bir
{istiinkiigii ve 6nceligi var sayillamaz. Ozellikle Helmholtz ve Poincaré, olusturmus
olduklar1 varsayimsal olanakli diinyalarin igerisinde yer alan ve bizimle ayn1 biyolojik
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donanima sahip organizmalarin degisen c¢esitli gorsel ve taktil duyumlar
dogrultusunda benimseyecekleri farkli geometrik yapilar oldugunu tartisirlar.
Poincaré’nin meshur kiire-uzay deneyi bunun en iyi érneklerinden biridir. Poincaré
bizden farkli bir diinya tasvir etmemizi ister ve bu diinyanin 6zelliklerini siralar. Bu
diinya bir kiirenin i¢inde hapsolmustur. Bu diinyada sicaklik da yeknesak degildir; bu
kiirenin merkezinden uzaklasmaya basladigimizda sicaklik diiser. Bu diinyada var olan
tiim maddelerin sicakliga bagli genlesme katsayisi da bizim diinyamizdaki maddelerin
aksine aynidir. Yani her cismin sicaklik yiiziinden boyutlarinda meydana gelen
degismeler bu kiirenin i¢inde nerede olduklarina gore belirlenecektir. Poincaré ayrica
bu diinyada 15181n kirilma endeksinin de bizim diinyamizdan farkli oldugunu, ve 15181
diiz bir yol degil egimli bir yol izledigini ekler. Bu diinya Poincar¢ i¢in diisiiniilmesi
imkansiz olan bir uzay degildir. Bu uzay diisliniilebilir, ¢linkii herhangi bir mantiksal
¢elismeden muhaftir. Bu uzayi olusturan bahsi gegmis ozelliklerin hicbiri birbiri ile
celisir degildir. Poincaré’ yi Kant’tan ayiran diisiincesi onun bu diinyanin
algilanmasmin da miimkiin oldugunu sdylemesinde yatar. Poincaré’ ye gore bu
diinyada yasayan bize benzer canlilarin da geometrik bilgisinin olacagini, ve bu
geometrik bilginin bizimkinden farkli olacagini savunmustur. Bu kiire-dlinyada bu
canlilarin gozlemleyecegi iliskiler Oklit geometrisi ile agiklanmaktansa hiperbolik
geometri kullanilarak aciklanacaktir Poincaré’ye gore. Eger bi Bu diinyay1 bir giin biz
ziyaret etseydik, basta herseyi Oklit geometrisi kullanarak agiklamay calisacaktik.
Fakat zamanla bu kure-diinyada edindigimiz yeni taktil ve gorsel izlenimler 15181inda
geometrik sistemimizi degistirecek ve gozlemledigimiz iligkileri farkli geometrik
yapilar kullanarak agiklamaya girisecektik. Ozet olarak bu ii¢ filozof, Kant’in aksine,
geometrik Onermelerin sentetik a-priori oldugu fikrini reddeder, ¢ilinkii geometrik
kavramlarla eslestirecegimiz imgeler veya objeler tamamen deneyimlerimiz 1s181inda
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belirlenir. Biz diiz ¢izgi kavramini bugiin Oklit geometrisin buyurdugu sekilde
tanimliyorsak bu deneyimi agiklayiciligi bakimdan en uygun geometrik yapinin
Oklidyen geometri olmasindan kaynaklanir. Farkli fiziksel dis kosullar diiz ¢izgi
kavramini nasil tanimlayacagimiz konusunda bize farkli sekilde kilavuzluk edebilirler.

Her ne kadar Helmholtz ve Poincaré’nin geometrinin kaynagma iliskin
goriisleri birbirlerinden farkli olsa da, miitabik olduklar1 goriis geometrinin
Oonermelerinin asla a priori bilinemeyecegi ve deneyimin bu &nermelerin
bilinebilmesinde bir paymin oldugudur. Helmholtz geometrik bilgimizin tamamen
empirik oldugunu savunmustur. Fakat Poincaré geometrik bilgimizi miimkiin kilan 6n
kosullarin uzlagimsal karakteri tizerinde durmustur. Poincaré i¢in geometrik onermeler
uzlasimsaldir; ¢linkii biz geometri yapmaya baslamadan bir takim uzlasimlar hakkinda
miitabik oluruz. Uzlasimlar gizlenmis tanimlardir ve Oklit geometrisi bu uzlasimlarla
doludur. Bir 6rnek verecek olursak, Oklit Geometrisi’nde dnermelerin neredeyse hepsi
kongriians ilkesi {lizerinde temellenir. Kongriians ilkesi iki cismin birbirlerine esit
olmast i¢in uzayda ist tste denk getirilebilmesi gerektigini sOyler. Poincaré igin
kongriians ilkesi uzlagimsal bir ilkedir ve geometrinin temelinde bu ilke vardir. Bu ilke
bir dlcude deneyimden turetilir. Bunun sebebi dogada herhangi iki nokta arasinda
hareket ederken sekil degistirmeyen ve izlenimlerini viicudumuzun karsilikli bir
hareketiyle diizeltebildigimiz kat1 cisimlerin var olmasidir. Oklit geometrisinde
kongrlans ilkesi ortiik bir belite isaret eder ve bu belit bu yukarida bahsedilen
hareketin miimkiinatidir. S6zgelimi Oklit iki cisim arasindaki denkligi kanitlamak
istediginde bu cisimler uzayda hareket ettirerek iist-Uste getirmeye calisir. Bu kanitin
basarili olmasi i¢in belli geometrik cisimlerin sekil degistirmeden hareket edebildigi
varsayilmalidir. Fakat bu Oklit geometrisinde agik¢a bir belit olarak belirtilmez. Buna
ancak dolayli yoldan varilir. Ote yandan her ne kadar dogada bu tarz cisimler
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gbzlemlesekte doga bize ancak ve ancak agag1 yukari ilkeler sunabilir. Gergekten sekil
degistirmeden hareket eden cismi aklin bir irliniidiir. Fakat bu diisiince Kant’in
disiindiigii gibi saf sezgimizde tasarlayabildigimiz bir diislince degildir, anlama
yetisinin bir Grindddr.

Bu baglamda Poincaré igin kat1 cisimlerin ve 1s18in hareketleri konusunda
onden vermis oldugumuz bir 6n tanim uzlagimsal olan bir elementtir. Kat1 cisimlerin
ve 11k siizmelerinin hareketlerini tanimlayisimiz bize hangi geometrik yapinin
gozlemledigimiz iliskileri agiklamak i¢in kullanacagmi belirlerler. Bu tanim
gbzlemlenen kati cisimler ve 15181n hareketi dogrultusunda degisebilir. Durmadan sekil
degistiren cisimlerin i¢inde ve de yoriingesi diizlemsel olmayan 151k slizmelerinin
gbzlemlenebildigi bolgelerde uzunca siireler yasamis olsaydik Oklidyen bir diiz ¢izgi
tanimina ulasmamiz miimkiin olmayabilirdi. Deneyim bize hangi tanimi
kullanacagimiz konusunda yardimci olabilir, ama asla hangi tanimin kesinlikle
secilecegine deyin bir sey soyleyemez. Her tanim is gorebilir, fakat bazi tanimlar diger
tanimlardan daha kullanighdir. Bunun sebebi bazi tanimlar 151ginda gézlemlenen
iligkileri betimlemek diger tanimlara kiyasla ¢ok daha kolay ve elverislidir. Bunun
sonucunda deneyimin asla ve asla bir geometrik yapinin dogru ya da yanlis olduguna
dair bir yargida bulunmamiza bir olanak tanimayacaginda sahit oluruz. Poincaré igin
geometrinin 6nermelerinin uzlagimsal olmasi tam da bu demektir; bir geometrik yap1
digerinden daha dogru ya da daha yanlis olamaz, ancak daha kullanigh ve uygun
olabilir. Bu durumda Oklit geometrisi asla deneyim 1s131nda yanlislanamaz. Bir bilim
adam1 gozlemledigi 151k siizmelerinin ve kati cisimlerin diiz bir dogrultuda hi¢ bir
zaman ilerlemedigini saptarsa yapmasi gereken sey kati cisimlerin hareketine iliskin

yasalar ile optikte 15131n hareketine iliskin yasalar1 degistirip Oklit geometrisini tutmak
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olacaktir. Geometri ve fizik yasalari bir noktada birbirleri ile karsilikli sinanma iligkisi
igerisindedir.

Oklit geometrilerinin diger geometrik yapilara tercih edilmesinin arkasinda
yatan sebepler konusunda Reichenbach kapsamli bir ¢alisma yapmistir. Reichenbach
Poincaré gibi geometrinin uzlagimsal bir karakteri oldugunu savunmustur. Ona gore
kongriians ilkesine iliskin verilen koordinatif tanim, biitlin geometrik egzersizimden
once gelir. Reichenbach biitiin geometrik egzersizin dncelikle bir birimin uzunlugunun
tanimlanmas: ile basladigimi sdyler. ikincil elzem olan tanim bu ilk asamada
tanimlanmis birim uzunlugun hareket ederken sekil degistirmedigini One suren
tanimdir. Bu iki tanim yapildigi anda bir geometrik yapiya isaret eder. Reichenbach,
Poincaré’ye benzer bir bigimde gozlemledigimiz ham olgular1 diledigimiz geometrik
yapt ile belirleyebilecegimizi vurgular. Dikkat edilmesi gereken sey deneyimde
gozlenen olgularla tam ortiismesi bakimindan fiziksel yasalarin kullanilan geometrik
dile bagli olarak modifiye edilip edilmeyecegidir. Ornek verecek olursak biz bir takim
olgulari Oklidyen geometri kullanarak modelleyebiliriz, fakat eger olgulari
acgiklayicihigr bakimindan Oklit geometrisi yeterli degil ise, biz fizik yasalarini da
kurdugumuz sistemin olgularla ortiismesi bakimindan modifiye etmeliyiz. Eger
gozlemledigimiz iki diiz ¢izgi arasindaki mesafe aciliyorsa ve bu olguyu aciklamak
icin Oklit geometrisinde 1srarc1 oluyorsak, bu iki diiz ¢izgi arasindaki agilmay1
evrensel bir kuvvetin varligindan s6z ederek aciklamaya girismeliyiz.

Reichenbach’ in kendine mahsus uzlasimsalcilig1 uzay: agiklamada secilecek
geometrinin goreli oldugunu vurgular. O da Poincaré ile bu hususta taraf olarak
geometrik bilgimizin Kant’in digiindiigli gibi sentetik a-priori olmadigim
savunmustur. O da tipki Poincaré gibi bir geometrik yapinin bir digerinden
epistemolojik anlamda daha iistiin olamayacagini soyler. Fakat Poincaré’ nin aksine
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bizim neden Oklidyen geometriyi diger geometrik sistemlere tercih ettigimiz {izerinde
kapsamli  agiklamalar  yapmaya c¢alisir.  Oklit  geometrisi  lokal  ve
deneyimleyebildigimiz uzayr agiklayiciligt bakimindan en makul geometri
oldugundan ve gorsellestirilebilirligi bakimindan 6zel bir epistemolojik fonksiyonu
oldugundan diger geometrilere tercih edilir. Poincaré’ nin aksine Reichenbach,
Einstein’in Oklid-dis1 geometrileri basarili bir sekilde aktiiel deneyimimizdeki ham
olgular1 agiklamak i¢in kullandigina tanik olmus bir bilim filozofudur. Bu bir nevi ona
uzayin geometrik karakterinin tam anlami ile uzlasimsal olmadigini ve birim uzunluga
ve onun hareketlerine iliskin uzlagimsal tanimlar yapildiktan sonra uzayin geometrik
karakterinin ampirik olarak belirlenebilecegi goriisiinii kazandirmistir. Reichenbach,
Einstein’in kuraminin astronomik Ol¢ekte zuhur eden iligkilerin agiklanmasinda
kullanildigimi biliyordu. Fakat Oklit geometrisinin Oklid-dis1 geometrilerle olan
farkinin  insanlarin  giindelik  hayatta  gozlemledigi  objelerin  Olgeginde
saptanamayacaginin da farkindaydi. Bu bakimdan fiziksel uzamin lokal ve global
ozelliklerini betimlemede secilecek geometrik yapilar birbirinden farkl olabilirdi. Bu
bakimdan Reichenbach Oklit geometrisinin bu giindelik hayat &lgeginde tercih
edilebilecegini savunmustur.

Reichenbach ikincil olarak Oklit geometrisinin gorsellestirilebilirligi
bakimdan 06zel bir epistemolojik fonksiyonu oldugunu soyler. Sozgelimi biz
imgelemimizde diiz bir ¢izgi tasarlamaya calistigimizda genellikle Oklidyen
niteliklere sahip bir diiz ¢izgi tasarlariz. Cogu Kant sonrasi filozof Kant’in geometri
kuramini kurtarmak igin Oklit geometrisinin zorunlu ve evrensel olarak gorsel
uzaymmiz i¢in gecerli oldugunu savunmustur. Bu filozoflardan biri olan Strawson’a
gbre bizim gorsel uzayimiz, yani imgelemimizde tasvir ettigimiz objeler ve onlarin
iliskileri, zorunlu ve evrensel olarak Oklidyen niteliklere sahiptir. Strawson gorsel
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uzayimizt konu alan geometriye fenomenal geometri ismini verir. Fenomenal
geometrinin objeleri fenomenal imgelerdir. Bu imajlarin geometrik karakteri zorunlu
ve evrensel olarak Oklidyen geometri ile betimlenebilir. Strawson Oklidyen
geometrisinde bahsi gecen kavramlara tekabiil eden imajlarin zorunlu olarak o
kavramlarla birlikte distniildigini soylemistir. Biz diiz ¢izgi kavramini
diisiindiigiimiizde o kavramin altinda zorunlu olarak Oklidyen niteliklere sahip bir diiz
cizgi tasvir ederiz. imaj zorunlu olarak kavramda igerilir. Bu bagldamda Strawson
bizim asla ve asla Oklid-dis1 bir diiz ¢izgiyi imgelemimizde tasvir edemeyecegimizden
bahseder. Bu ona gore imkansizdir ¢iinkii biz Oklid-dis1 bir diiz ¢izgi
diisiindiigiimiizde ister istemez bir egri diisiiniiriiz. Yani Oklid-dis1 geometrilerde var
olan kavramlarin imgelemdeki tasviri daimi olarak Oklid geometrisinin birtakim baska
kavramlar ile eslestirdigimiz imgeler vasitasi ile miimkiin olabilir.

Reichenbach igin gorsel uzayimiz asla ve asla a-priori belirlenemez. O gorsel
uzaymmizin Oklidyen olmasinin epistemolojik bir fonksiyonu oldugundan bahseder
fakat Strawson gibi ileri giderek gorsel uzayimizin geometrik belirleniminin zorunlu
ve evrensel olarak Oklidyen oldugunu ileri siirmez. Reichenbach imgelemimizde bir
kavrama tekabiil eden imaj1 canlandirdigimizda ya da ¢izdigimizde bir takim diizgiisel
ve Ortuk kosullarin etkisi altinda kaldigimizdan bahseder. Biz bir diiz ¢izgi
diistindiigiimiizde ister istemez o diiz ¢izginin ¢izildigi yiizeyin diiz oldugunu hayal
ederiz. O yiizey ¢esitli deformasyonlara ugradiginda artik {izerine ¢izilen diiz ¢izgilerin
birbirleri ile girdikleri g¢esitli geometrik iligkilerin ayn1 kalmasi beklenemez. Bu bir
bakima sunu ifade eder: biz geometrik edimimizi imgelemimizde gerceklestirirken
daima bir takim topolojik bir yapiy1 ortiik olarak benimseriz. Bu topolojik yap1 bir
degisime ugradiginda ister istemez geometrik edimimizin icerigini olusturan imgeler
ve onlarin arasindaki iliskiler de degisime ugrar. Ornek vermek gerekirse topoloji dersi
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almig bir matematik 6grencisine tek yiizii olan bir ylizeyin miimkiin olup olmadig1
sorulsa 6grenci buna olumlu bir cevap verecektir. O bir yuzeyi alacak ve onun bir
ucunu 180 derece biikerek diger ucu ile birlestirecek ve tek ylizeyi olan bir yiizey insa
edecektir. Iki paralel cizginin kesisip kesismedigine iliskin soru da bu tiirden bir
sorudur. Bu soruya verilecek cevap 6nceden benimsenmis topolojik bir yapiya gore
sekillenir. Yiizeyleri diizlemsel olarak tasvir eden bir kimse bu soruya olumsuz yanit
verecektir. Yiizeyleri kiiresel olarak tasvir eden bir kimse de bu soruya olumlu yanit
verecektir.

Reichenbach’a gore bu diizgiisel ve ortiik kosullarin kokeni biyolojik bir
aligkanliga dayanir. Bu bir nevi psikolojik, fizyolojik ve evrimsel bir siirecin nihai
sonucudur. Bu sebeple bizim gibi organizmalar, kendi biyolojik ve evrimsel tarihleri
hesaba katildiginda, bu tarz diizgiisel ve ortiik kosullarin i¢inde evrilmis ve belirli bir
topolojik yapiy1r gorsellestirme edimi igin Ortiik olarak benimsemis olsa da, bu
siiregelen aliskanlig1 bozabilirler. Bu benimsenmis ve diizgiisel olarak kendini bize
dayatan topolojik yapi, biz farkli bir kongriians iligskisine adapte olmaya
basladigimizda degisime ugrar. Biz kendi biyolojik ve evrimsel tarihimiz boyunca
belirli bir kongriians tanimina adapte olan ve bu tanim Uzerinden diizgusel bir topolojik
yapiy1 Ortiik olarak benimsemis bir organizmayizdir. Farkli ¢evresel kosullar bize
farkli kongriians iliskilerini segcmeye, ve bununla beraber farkli topolojik yapilari
imgelemimizdeki imajlar tasvir etmek i¢in benimsememize sebep olur. Poincaré’ de
Reichenbach gibi benzer bir evrimsel ve biyolojik argiiman sunmustur. O da geometrik
bilgimizin kdkenlerine iliskin yaptig1 sorgulamada atasal deneyimlerimizin 6nemi
Uzerinde durur. Poincaré ger¢ek anlamda uzaya iliskin tasarimlarimizin sadece bireyi
deneyimlerine indirgenip indirgenemeyecegini sorgulamistir. Uzay fikrinin olusumu
ve bunun sonucu olarak siirdiirdiglimiiz geometrik edimlerimiz ya bireyin sadece
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kendi hayatinda deneyimledikleri ile dogrudan iliskilidir ya da o bireyin bir iiyesi
oldugu irka mensup bir bilgi ¢esididir. Sonu¢ olarak Poincaré belli bir geometrik
sistemin diger sistemlere tercih edilmesinde rol oynayabilecek faktorlerin basinda
adaptasyon ve inheritans olabilecegi lizerinde durur, fakat bu argliimanlari i¢in eksiksiz
bir temel aramaya girismez.

Ozetle bahsi Helmholtz, Poincaré ve Reichenbach geometrik bilgimizin asla
ve asla Kant’in One siirdiigii gibi sentetik a priori olmadigini savunmustur. Bunu
gostermek i¢in fizyolojimizin, ¢evresel kosullarimizin, biyolojik tarihimizin ve
psikolojimizin oynadigi roliin altin1 ¢izmislerdir. Bu filozoflar Kant’in aksine
Darwin’in evrim kuramma, Oklid-dis1 geometrilerin kesfine ve bu Oklid-dis1
geometrilerin Einstein tarafindan basarili bir sekilde aktiiel diinyamizdaki uzamsal
iliskileri betimlemede kullanilmasina tanik olmuslardir. Biitiin bu farkli alanlardaki
gelismeler hesaba katildiginda Kant’in geometriye iliskin kurami kaginilmaz olarak
bu filozoflar tarafindan yogunca elestrilmis ve geometrik bilgimizin kdkenine iliskin
alternatif olasiliklar ortaya siiriilmiistiir. Kant’in geometrik bilgimizin zorunlulugunu
ve evrenselliginin olanakliliginin kosulunu agiklamak icin ortaya siirdiigli ar1 gori
formlar1 bu filozoflarca artik kabul edilmemistir. Uzay’in bize ickin oldugu goriisii
zaman iginde geometrik bilgimizin zorunlulugu ve evrenselligi sorgulanmaya

baslandiginda reddedilmeye baglanmistir
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