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M.A., The Department of Philosophy 

Supervisor: Dr. Samet Bağçe 

 

 

September 2021, 95 pages 

 

 

 

This thesis examines Kant’s philosophy of geometry, and the possibility of reconciling 

non-Euclidean geometries with Kant’s philosophy of geometry. Kant believed that the 

propositions of Euclidean geometry are necessary and universal. In addition to that, he 

embraced the view that the character of space is Euclidean and he did not give any 

credence to the possibility of determining the character of space by using another 

geometrical structure. He also propounded the view that experience plays no positive role 

in the acquisition of geometrical knowledge. In this thesis, the views of Helmholtz, 

Poincaré and Reichenbach as to the positive role experience plays in the genesis of 

geometry are elaborately discussed. In the light of their views, it is shown that different 

environmental conditions have the potency to compel sentient beings like us to adopt non-

Euclidean geometries. These geometries, in turn, has a proper intuitive content in 
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contradistinction to Kant’s claim that they are only possible logically, not intuitively. 

Under these considerations, this thesis shows that it is not possible to reconcile Kant’s 

theory of geometry with non-Euclidean geometries even if undergoes appropriate 

modifications offered by certain philosophers such as Strawson, who tried to reduce 

the scope of Kant’s theory of geometry to visual space by arguing that visual space 

cannot be non-Euclidean. For Strawson, the propositions of Euclidean geometry are 

necessary and universal as was propounded by Kant, but its validity its limited to our 

visual space. This thesis also shows the possibility of visualizing non-Euclidean 

geometries by considering the views of abovementioned philosophers in 

contradistinction to Strawson’s arguments in support of Kant’s theory of geometry. 

 

Keywords: pure intuition, non-Euclidean geometry, visual space, Poincaré, 

Reichenbach 
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ÖZ 

 

 

THE RECONCILABILITY OF NON-EUCLIDEAN GEOMETRIES WITH 

KANT’S PHILOSOPHY OF MATHEMATICS 

 

 

ÇÖTELİ, Can 

Yüksek Lisans, Felsefe Bölümü 

Tez Yöneticisi: Dr. Samet Bağçe 

 

 

Eylül 2021, 95 sayfa 

 

 

Bu tez genel hatları ile Kant’ın geometri felsefesini ve Öklid-dışı geometrilerin 

Kant’ın geometri felsefesi ile uzlaştırılabilirliğinin olanaklılığını araştırmaktadır. Kant 

Öklid geometrisinin önermelerinin zorunlu ve evrensel olduğunu savunmuştur. Buna 

ek olarak uzayın karakterinin Öklidyen olduğunu ve uzayın geometrik karakterinin 

farklı bir geometrik yapı kullanarak belirlenemeyeceği görüşünü benimsemiştir. 

Kant’ın ortaya attığı bir başka görüş ise geometrik bilgimizin kökeninde deneyimin 

asla bir payı olmadığıdır. Geometrik bilgimizin kökeninde deneyimin pozitif bir 

rolünün olduğuna ilişkin Helmholtz, Poincaré ve Reichenbach tarafından savunulan 

görüşler detaylı bir şekilde tartışılmıştır. Bu görüşler ışığında, farklı çevresel 

koşulların, bizim gibi canlıları farklı geometrik yapıları seçmeye itebileceği 

gösterilmiştir. Öklid-dışı geometrilerin bunun sonucunda duyumsal bir içeriğe sahip 

olabileceği Kant’ın bu tarz geometrik sistemlerin ancak mantıksal olarak mümkün 
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olabileceği fakat duyumsal olarak mümkün olamayacağı görüşünün aksine 

gösterilmiştir. Bütün bunlar hesaba katıldığında, bu tez Kant’ın geometri kuramının 

Öklid-dışı geometriler ile uzlaştırılamayacağı gösterilmiştir. Strawson gibi Kant 

sonrası filozoflar, Kant’ın geometri kuramının geçerliliğini görsel uzayı kapsayacak 

şekilde modifiye etmeye çalışmışlardır. Strawson’a göre Öklidyen geometri Kant’ın 

savunduğu gibi zorunlu ve evrenseldir, fakat geçerliliği görsel uzay ile sınırlıdır. Fakat 

bu tezde görsel uzayımızın da Öklid-dışı bir içeriğe sahip olabileceği yine aynı 

filozofların görüşleri göz önünde tutularak tartışılmıştır. 

 

Anahtar Kelimeler: arı görü, görsel uzay, Öklid-dışı geometir, Poincaré,  

Reichenbach 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Mathematics, without doubt, is a fascinating topic to reflect upon for 

philosophers. Since the times of antiquity, philosophers have always enquired into the 

nature of this peculiar knowledge. What are mathematical entities? Do they exist? If 

they do exist, then where and how do they exist? Also, how do we know mathematics? 

From what source did we attain such knowledge? The early philosophers have been 

burdened by these seemingly insurmountable ontological and epistemological 

questions. In time, this burden became the peculiar fate of philosophers; being always 

dissatisfied with partial accounts as to the reality and the origins of mathematical 

knowledge, they always tried to advance further and improve their understanding of 

these matters. 

 Perhaps what gave rise to the contentious views as regards the epistemological 

and ontological status of mathematical knowledge is, without the slightest doubt, the 

effect Euclid’s Elements brought about on philosophers. Even though Euclid’s 

Elements, and along with it geometry and geometrical reasoning, became the 

paradigmatic source of apodictic certainty, necessity and universality. The origin of 

such necessity and universality daunted philosophers for centuries. Many philosophers 

tried to account for the origins of geometry according to their ideologies. Empiricists 

and rationalists offered their solutions, but not before Immanuel Kant has appeared on 

the scene, the disputes have been successfully settled. 
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 Kant settled the disputes by successfully synthesizing empiricism and 

rationalism, and offered a fresh philosophical ground for Euclidean geometry. Owing 

to Kant, Euclidean geometry gained its secure and unshakable place as a true science 

of space. For a very long time, Kant’s philosophy of geometry reigned over Europe; it 

seemed, after a very long time, that Euclidean geometry was successfully and 

philosophically grounded.  

 19th and 20th century witnessed revolutionary thoughts that radically altered the 

way mathematics and physics are understood. The discovery of Non-Euclidean 

geometries, and the discovery of the special and general theories of relativity and 

quantum mechanics in the field of physics are, without doubt, the most triumphant 

discoveries in the history of intellectual thought, the importance and value of which 

can be compared to the discoveries of The Elements and Newton’s laws of motion and 

universal gravitation. The discovery of Non-Euclidean geometries came into a 

clashing course with our understanding of geometry and of course with Kant’s 

philosophy of mathematics, because for a considerable long period of time, no one has 

doubted that the space could be other than the way it was described by Euclid’s 

Elements. But Non-Euclidean geometries have granted the possibility that space could 

actually be otherwise than the way it was described by Euclidean geometry. Perhaps 

the final blow to Kant’s philosophy of mathematics came from Einstein’s discovery of 

special and general relativity, because Einstein successfully made use of Non-

Euclidean geometry to account for spatial relations between objects, which otherwise 

could not simply be modelled by Euclidean geometry. This, in effect, proved that the 

non-Euclidean geometries are not just fantasies of mathematicians.  

 The subject of this thesis is to investigate whether or not non-Euclidean 

geometries can be reconciled with Kant’s philosophy of mathematics. Even though it 
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was first assumed by certain philosophers and scientists that these discoveries both in 

mathematics and physics rendered Kant’s theory of geometry and space obsolete, there 

appeared, in the subsequent chapters in the history of philosophy, some philosophers 

who tried to rescue Kant’s philosophy by showing that his philosophy can endure these 

death-blows if appropriate modifications are made in his system. This thesis will begin 

by a concise exhibition of the historical roots of geometry and then it will make a brief 

historical survey with regard to the philosophical reflections upon geometry up until 

Kant has appeared on the scene. In order to obtain a thorough understanding of Kant’s 

philosophy, a brief information as to the grounds which prepared the motivation for 

Kant to come up with his own thesis must be provided. In the second chapter, a 

prolonged and more detailed exposition of Kant’s philosophy of mathematics, along 

with his views as regards space and the exact relation between space and geometry 

will be given. The third chapter will focus on the intellectual climate after Kant, and 

on the discovery of Non-Euclidean geometries. And lastly, in the final chapter, the 

impact of Non-Euclidean geometries on Kant’s philosophy of mathematics, in the light 

of numerous interpretations from variety of philosophers, such as Poincaré and 

Reichenbach, is going to be discussed. 

 In conclusion, my thesis aims to show that no modification can save Kant’s 

theory of geometry from its demise. First of all, it will be shown that the space could 

be modelled by non-Euclidean geometries in contradistinction to Kant’s views. This 

brings us to the conclusion that the Euclidean geometry is not the only geometry that 

can be used in describing the character of space. Second of all, it will be shown that 

the intuitive comprehension of non-Euclidean geometries, along with its rigorous 

logical comprehension, is possible. Kant and his followers believed that it is 

impossible to make sense of non-Euclidean geometries. My thesis is going to tackle 
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the issue of the possibility of the intuitive plausibility of non-Euclidean geometries, 

and it is going to provide an arena in which conflicting views of the opposing parties 

are going to battle each other. 
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CHAPTER 2 

 

 

A BRIEF HISTORICAL SURVEY 

 

 

Geometry, as a practice, owes its origins to Egyptians and Babylonians, who 

used it as an instrument for the measurement and determination of magnitudes. The 

approach of Egyptians and Babylonian practitioners to geometry was practical; they 

used it in architecture, surveying, and sky observations and in many more practical 

fields. The annual rising of the Nile River, for example, necessitated the incorporation 

of geometry and engineering; for without the aid of geometry, it would have been 

difficult, if not impossible, for the Egyptian people to cope with the consequences of 

this yearly flood. Proclus gave a brief comment as to the attitude of the Egyptian 

practitioners towards geometry with his following words:  

According to most accounts, geometry was first discovered among the 

Egyptians, taking its origin from the measurement of areas. For, they found it 

necessary by reason of the flooding of the Nile, which wiped out everybody’s 

proper boundaries. (Proclus, 1970, p. 52) 

 

This, however, does not mean that the minds of the Egyptian and Babylonian 

practitioners of geometry were not occupied with certain geometrical problems. It is 

well known today that these ancient practitioners contributed a lot to the field of 

geometry by discovering certain geometric relations. Egyptians, for example, 

discovered how to calculate the area of a given triangle and circle (Schreiber, 2015). 

Various areas and volumes were calculated, but this, again, was carried out with 
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respect to the practical engineering problems that had needed to be solved back then 

(Schreiber, 2015). 

The transition from Egyptian and Babylonian geometry to ancient Greek 

geometry is remarkable in the sense that in the latter, geometry was gradually stripped 

off of its empirical character and vulgar origins, and it gained a new rigorous and 

scientific outlook. For Greek philosophers, it was as though geometry, as a practice, 

was carried out only for the sake of the spirit of geometry and nothing else. The 

comment provided above that belongs to Proclus continues as follows:  

Nor is there anything surprising in that discovery both of this and of the other 

sciences should have had its origin in a practical need, since everything which 

is in process of becoming progresses from the imperfect to the perfect. 

(Proclus, 1970, p. 52) 

 

Schreiber states that it was with Pythagoras that geometry had been started to be 

practiced for its own sake; that is, completely detached from the practical affairs 

(Schreiber, 2015). Also later on, we see with Plato, a distinction between the geometry 

practiced by merchants and builders, and that practiced by philosophers. (Plato, 1997).  

Around 300 B.C. Euclid appeared on the scene. Without doubt, one of the most 

brilliant and remarkable achievements in the history of the intellectual thought is 

Elements of Geometry. This monumental edifice was compiled by the great ancient 

Greek mathematician, Euclid. The compilation was remarkable in that Euclid put 

together the findings of Babylonian, Egyptian and Greek geometricians and organized 

them into a single and consistent system. What is new in the Greek system is the 

axiomatic approach so as to establish a firm theory of space. The system is composed 

of axioms, postulates and definitions, each of which is then used to prove certain 

propositions. Axioms actually go by the name of common principles. These principles 

are nothing more than the principles of logic which are common to all scientific 
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disciplines unlike postulates, which are bodies of premises taken to be self-evidently 

true and specific to the field of geometry. Postulates are special in that they function 

as the determination of or a set of procedures for constructing a well-defined geometric 

figure. Through the postulates, one obtains information as to the most elementary 

figures that can be constructed in geometry. Propositions are generally stated in natural 

languages; they function as statements which are to be shown through certain 

constructions and then be proven accordingly. The Elements is the prototype of a first 

deductive system in which theorems can be deduced by virtue of the proper utilization 

of the axioms, postulates and definitions. One of the most remarkable aspects of 

Euclid’s system is that the soundness of the theorems need not go through validation 

which involves processes of measurement and experimentation; these theorems are 

rather shown to be true with an unprecedented rigor and assuredness through 

deduction. 

 The Elements of Geometry has become the paradigmatic example of the 

mathematical method and an axiomatic system, and along with its influential spread 

across centuries, philosophical and mathematical problems associated with it have 

begun to surface. Philosophers and mathematicians did not refrain themselves from 

reflecting upon the nature of geometry and geometric reasoning. Daunted and 

perplexed, perhaps by the compelling force with which the propositions of Euclidean 

geometry impose themselves upon the human mind, many of the philosophers 

naturally questioned the origins of the geometrical knowledge and from whence it 

derives its necessity and certainty. What was, after all, the proper subject-matter of 

geometry? Did it study the visible shapes and figurative properties of concrete objects? 

Did it study the spatial relations between objects? Did it study the space itself? Or was 

it about something more abstract and ethereal, as perhaps had been thought by Plato?  
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Plato was the forerunner of the idea that the geometrical objects were not to be 

confused with sensible objects (Plato, 1968, 529c-530a). A line, for example, as 

defined by the Elements, is that which lies evenly with its points (Heiberg, 2007, p. 6). 

But from whence we could know that such a property belongs to the concept of line if 

the objects of sensation are not able to instantiate that concept accordingly? This shows 

that he was aware of the difficulty of reconciling the abstract entities of geometry with 

their sensible counterparts. Thus, in seeking the true origins of geometry, Plato had 

recourse to the existence of the world of forms, eternal and unchanging, which is 

revealed to us through rational contemplation. Plato had a point, for Euclid’s Elements 

seem to have been unrelated with the study of the practical problems related with the 

measurement of concrete objects. The unrelatedness of Euclid’s Elements with the 

measurement of concrete objects was exemplified by Stephen Barker, a philosopher 

who was keenly interested in these issues. In his book, Philosophy of Mathematics, he 

claims that a straight line cannot be drawn between two points on the surface of the 

earth, for there are various factors which have the potential to render the activity of 

drawing a straight between two points almost impossible. (Barker, 1964) So whatever 

the subject matter of The Elements was, it surely was not concrete figures and their 

measurable properties. This is why Plato sought a refuge to the divine and eternal 

forms and deemed geometry as an extra-mundane endeavor which transcends the 

world seen, heard and touched. 

 Plato’s position is characterized today as realism about mathematical entities 

which also goes by the name of Platonism. This, however, is not the only interpretive 

solution to Euclid’s Elements. The solution offered by Plato comes with a burden of 

ontological commitment; a commitment to the existence of a realm which transcends 

this world and is forever hidden from our perceptual faculty. This ontological 
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commitment, which is in a sharp contrast with the core tenets of empiricism, prepared 

the ground for the disputes as regards the origins of geometrical knowledge and these 

disputes have not been settled even up to the present day.  

Empiricists, such as John Locke, George Berkeley and David Hume, were not 

eager to dispense with the sensible aspect of geometrical reasoning; geometry, after 

all, is using figures, such as points, lines, surfaces, etc. with which we are closely 

acquainted in our everyday experience. So it is not a daring assumption that we come 

to know these objects of geometry through our experience.  

Berkeley found the abstract geometrical entities as inconceivable, or 

unimaginable. To give an example, no particular line seems to be able to instantiate 

the concept of a straight line properly as was defined by Euclid, for neither are we able 

to imagine a breadthless line as it was defined within the Elements, nor we are able to 

see and inspect any in our experience. In Berkeley’s words: “Extension without 

breadth i.e., invisible, intangible length is not conceivable tis a mistake we are led into 

by the Doctrine of Abstraction.” (Berkeley, 2019, 365a). Berkeley concluded that the 

proper subject matter of geometry is not “extension in abstract” (Jesseph, 2009). The 

object of geometry, for Berkeley, is “the sensible extension, composed of sensible 

minima.” (Brook, 2012, p. 2)  

Another seemingly insurmountable problem was related with the proof-

procedures in which the particular objects are used as universals that quantify over all 

the others. After all, for Berkeley, the subject matter of geometry is the particular 

figures constructed on a canvas or imagined. How is it, then, that a particular geometric 

figure, such as a constructed triangle, or a line, is able to convey general information 

as to all other triangles, if the object of geometry is nothing other than sensible 

extension? After all, no two triangles could be assuredly held to be equal in terms of 
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their magnitude. This point is also stressed by Hume. David Hume was troubled by 

the granular and irregular nature of apparent bodies, for no body that we measure is 

able to yield an exact information as to its length, area or volume. He said “appearance 

can never afford us any security, when we examine, the prodigious minuteness of 

which nature is susceptible.” (Hume, 1960, p.70). This would mean that, under the 

empiricist view, no two triangles could have been expected to possess exactly the same 

properties. A triangle, for example, is constructed in concreto when one attempts to 

prove a given proposition about all triangles. That triangle, then, serves as a universal 

in that every property that is discovered by virtue of an appeal to that particular triangle 

is also valid for all the other triangles. This seemed to be an oxymoron for empiricists 

such as Berkeley, for how is it that the universal is assumed by a mere inspection of 

the particular? The universality of the propositions of geometry must then, at best, be 

comparatively universal, a type of universality which is achieved through induction. 

But this was totally at odds with the deductive structure of Euclid’s Elements. This is 

why Berkeley thought “that propositions and demonstrations in geometry might be 

universal, though they who make them never think of abstract general ideas of 

triangles or circles.” (Berkeley, 2020, p. 209).  

Rationalists, on the other hand, seemed to be more content with Platonism 

compared to the empiricists. Rationalists such as Leibniz and Descartes, believed that 

it is the intellect which is able to grasp the essence of these propositions and confer to 

those propositions strict necessity and universality. So rationalists accused empiricists 

for “explaining away” the apodictic certainty of the propositions of geometry and 

treating the totality of the system as a mere contingency.  Descartes, for example, 

believed that the propositions of geometry are comprehended clearly and distinctly in 
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the natural light of reason which made any doubt cast on their soundness irrelevant 

and preposterous.  

Descartes held that “the nature of a triangle appears utterly evident” 

(Descartes, 2008, p. 50). In his mind, he continued, he can determine every property 

that follows from the essence of the concept of the triangle, clearly and distinctly. 

Descartes also believed that the presence of a triangle in his mind is not dependent at 

all to any particular triangle that he has come to know through his senses. One of the 

reasons that he put forward to support this thesis is that there exists in his mind 

“innumerable other shapes that it is impossible to suspect ever reached me via the 

senses.” (Descartes, 2008, p. 46) This means that we can conceive of, clearly and 

distinctly, a shape which we need not have been confronted prior to our contemplation 

of it in our experience. This, on the part of rationalists, is “explaining away” the 

connection between the geometry of sensibles and the geometry that is purely 

contemplated, for Descartes rigidly held the view that the idea of a triangle must not 

have arisen in him through his sense organs. Descartes, in his Dioptrics, developed a 

theory which he called natural geometry, to try to account for how the perceived 

geometrical character of objects and their relations are also innate and has been all 

along existed in the perceiver prior to one’s exposure to the world of senses. His thesis 

later confronted with series of criticisms raised by Berkeley and others. 

Even though rationalism is not necessarily affiliated with Platonism, it 

nevertheless remained loyal to the core tenets of Platonic thought that the intellect is 

somehow able to comprehend the propositions of geometry independently of the 

intervention of our faculty of sensibility. And this is exactly why the propositions of 

geometry must be universal and necessary, for the comprehension of the propositions 

begins from within and not bound to the knowledge attained from without, which is 
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contingent and fallible. Rationalists were well aware of the fact that no empirical 

proposition can impose itself upon the mind with such necessity and universality as 

that of geometry.  

The apparent dichotomy as regards the possible origins of geometry was on the 

scene. The contention between the members of the opposing school of ideologies is 

obvious. Both parties had their own reason to insist upon their view, and posed certain 

problems related with the views of the opposing side. It seems that rationalists were 

able to account for the apodictic certainty of the propositions of geometry by locating 

the seat of the geometrical knowledge within the pure intellect. But this in turn made 

the applicability of geometry to nature problematic and left other problems, such as 

the conceivability of the abstract figures in imagination and the universality of the 

propositions unsettled. Empiricists, on the other hand, located the true origins of 

geometry within sense perception at the expense of giving up on certainty and 

necessity of its propositions. 

Perhaps the most outstanding turn in the philosophy of geometry took place 

with Immanuel Kant. Kant was well aware of the problems of both schools of thought 

and his transcendental idealism can be crudely described as a synthesis of empirical 

and rational cognition. Kant, as pointed out by Henry Allison, accused empiricists for 

sensitivizing the intellectual concepts that belong to the field of geometry, and accused 

rationalists for intellectualizing appearances what properly belongs to sensibility 

(Allison, 2015). Owing to Kant’s outstanding work on human understanding and the 

elaborate picture that he provided as to how the co-operative work between the 

understanding and sensibility take place to account for condition of the possibility of 

sciences in general, geometry reclaimed and secured its indisputable proper place 
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along with other sciences, at least for a while. With Kant, geometry became a body of 

synthetic a-priori truths; which are apodictically certain, necessary and universal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

 

 

CHAPTER 3 

 

 

KANT’S PHILOSOPHY OF MATHEMATICS 

 

 

As was laid down earlier in the previous chapter, Kant’s genius lies in his 

successful synthesis of rationalism and empiricism. Kant did not agree with empiricist 

philosophers with regard to the origin of our mathematical knowledge, nor did he 

agree with rationalists as to the content of mathematics. He was well aware of the 

problems associated with both schools of thought.  

The secure progress of physics and geometry was put into danger by the 

skepticism raised by radical empiricists such as David Hume. Kant, notwithstanding 

the skepticism of Hume, was assured by the secure progression of geometry and 

physics because they are not as frequently renewed and “brought to a stop as they near 

their goal” (Kant, 2007, Bvii/Bviii). Kant witnessed the coming and going of many 

metaphysical systems, each of which was in contradiction with the other and strove in 

vain to claim an eminent place. But mathematics, he observed, never halted its 

progress and advanced without any breaks in the history. So mathematics is not just a 

random-groping, as is metaphysics, and the aim of the Critique is to prove that the 

ground upon which mathematics travel is secure. 

Kant’s solution to rescuing geometry from the skeptical assaults of empiricism 

and the dogmatic tenets of rationalism was his introduction of the philosophical system 

which goes by the name of Transcendental Idealism. The cardinal tenet of 

transcendental idealism is that the objects must conform to the forms of our intuition; 
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which Kant deemed as the pure intuition of space and pure intuition of time, and then 

must be determined according to the pure concepts of the understanding. Intuition is 

a term which is muddled with conflicting interpretations throughout the history of 

philosophy. The original German term is ‘anschauung’; which means ‘to behold’, or, 

‘to grasp directly or immediately’. Space and time, for Kant, are intuitions as to which 

we have an immediate direct access. Kant believed that our intuition of space and time 

are a priori1 frameworks (of space and time) which we impose upon experience and 

which act as the condition of the possibility of experiencing objects in the first place. 

Those frameworks are conditio sine qua non2 for experience, that is, by virtue of them 

the experience becomes possible.  Not only must the objects conform to this pure 

framework, but also to the concepts of the understanding which are not derived from 

experience.  Our knowledge, for Kant, cannot be obtained if we rest on intuitions 

alone, they must also be determined according to the a-priori concepts of the 

understanding. Through the former, the objects are given to us, through the latter, they 

are thought (Kant, 2007, B74/B75). To display the collaborative work of our pure 

forms of sensibility and the concepts of the understanding in producing knowledge, 

Kant famously asserted that “thoughts without content are empty, and intuitions 

without concepts are blind” (Kant, 2007, A51/A52). The content is provided to us by 

our intuitions, and understanding acts on these intuitions and determines them 

accordingly, by subsuming them under concepts and relating them to one another in a 

possible judgment. 

 

1 A-priori, in Latin, means prior to any given experience. A proposition is knowable a priori if it can be 
known without experience of the specific course of events in the actual world. (The Oxford Dictionary 
of Philosophy, 2008). A detailed exposition is going to be given in the subsequent section.  

2 In Latin, it means a necessary condition for something to exist or happen (Oxford Dictionary of 
Philosophy, 2008) 
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This revolutionary thought, that the objects must conform to our cognition, 

completely turned upside down the philosophical method which had been 

implemented before Kant. Before Kant, it has been assumed that all our knowledge 

must conform to objects, but Kant, by turning upside down the traditional conception, 

required that the objects now must conform to our cognition. The emphasis given to 

the experiencing subject than to the experienced object has been held to be analogous 

to the revolution brought about by Copernicus, where the astronomy has been turned 

“inside-out” by the replacement of the position of our Earth with the sun within his 

heliocentric system. The revolution brought about by Kant, since then, has gone by the 

name of the Copernican revolution in the history of philosophy. 

Transcendental idealism enabled Kant to refrain from believing in a mind 

independent world in which mathematical entities reside. Going back to Plato, 

mathematical objects had been believed to be residing in a non-spatio temporal and 

non-mental realm, completely resilient to all kinds of alteration and change. With 

transcendental idealism, Kant successfully avoided an ontological commitment to the 

mind-independence of mathematical objects. The origin of mathematical knowledge 

was now located in the pure intuition of space and time. It is by virtue of the peculiar 

and subjective constitution of our minds that we are able to do mathematics; and the 

construction of every mathematical object takes place in it in a-priori fashion.  

Transcendental idealism also enabled Kant to relate the mathematical 

knowledge to our sensibility without depriving the propositions of it from their 

apodictic certainty, necessity and universality.  It has been commonly held before Kant 

that any kind of knowledge that has its seat on sensibility is contingent and is gained 

from experience. But with Kant, this sensible faculty was no longer related only with 

the mode of representation by virtue of which the qualitative properties, such as the 
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color, sound, etc., of the objects of senses are given to us. It is true that Kant stated 

that “the mode in which we are affected by objects, is entitled sensibility” (Kant, 2007, 

A19/A20), but the distinction that Kant had drawn between the form and the matter of 

our representations enabled him to differentiate between pure intuitions and empirical 

intuitions. The matter of our representations (viz. their qualitative properties such as 

their color, sound, etc.) are that which we receive from our sense organs, which alone 

yields us sensations. The form, on the other hand, is the framework in which the 

manifold of sensations is organized and ordered. These frameworks are space and 

time, and they are forms of intuition. The pure form of sensibility also goes by the 

name of pure intuition. What remains when we take away from all the content of our 

representation of a body; such as its color, hardness and other sensible properties, is 

pure extension, which belongs to pure intuition. (Kant, 2007, A20/A21) 

Since he located the true origin of mathematics in our sensibility, he did not 

agree with rationalists, such as Leibniz and Wolff3 with regard to the content of 

geometry, for neither the sole inspection of any concept nor their relations carried out 

in chain of syllogisms in purely in a logical manner was capable displaying the peculiar 

nature of mathematical knowledge. Kant used the proof-procedures in Euclid’s 

Elements in setting up a counter-example to the methodology used by Wolff to display 

that mathematics required more than setting concepts into relations. His break with 

Wolffian tradition enabled Kant to relate our mathematical knowledge to our pure 

intuition of space. This is why Kant waged a war against analytical treatment of the 

truths of mathematics which deprived mathematics from its sensible content, which, 

 
3 Christian Wolff, a rationalist philosopher who had a huge impact on pre-critical Kant, held that 
mathematical method consists of “chain of syllogisms guided that proceed from axioms and 
definitions to theorems” (Frketich, 2019).  

 



 18 

for Kant, in its pure form, space and time. At the heart of his rejection there lies the 

connection between mathematics, and space and time, and as a proto-intuitionist, Kant 

was perhaps the first philosopher to tackle the origin and content of our mathematical 

knowledge to space and time. 

In conclusion, the proper subject matter of geometry is nothing but pure figures 

that are either realized by a process akin to abstraction4 as Kant have put it, or 

constructed in the pure intuition. So the propositions of geometry are neither synthetic 

a-posteriori nor analytic a-priori truths. The former is related to the empirical and 

contingent truths, whereas latter to the truths of reason, which are attained by virtue of 

pure reason alone, detached from our faculty of sensibility. They are synthetic a-priori 

truths, a novel category introduced by Kant to philosophy. 

In order to make a thorough understanding of what synthetic a-priori means, 

the distinction between a-priori/a-posteriori and analytic/synthetic judgments must be 

elaborately discussed. The next sections are devoted to the elaboration of these two 

critical concepts. 

 

 

 

 

 

 

4 By abstraction, I meant the process of taking away all that belongs to the content of the given 
representation. When everything as regards its content is abstracted from a representation, what 
remains is its form, or extension (Kant, 1929, B35). So, a triangularity of a triangle can either be realized 
by abstracting all the relevant features from a given empirical intuition, or it can be purely constructed 
in the imagination. It does not matter, for Kant, whether the form is realized in the sensible object or 
in the imagination, for the determinative form common in both representations is their spatial form, 
which is known a-priori.  More on this will be discussed in the subsequent sections. 
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3.1. The Distinction between A-priori and A-posteriori 

 

Kant stated in Preface to the First Edition of his Critique of Pure Reason that 

“the subject of the inquiry is the kindred question, how much we can hope to achieve 

by pure reason, when all the material and assistance of experience is taken away” 

(Kant, 2007, Axiv/Axv). As it is roughly discussed in the preceding sections, Kant 

believed that the lawful aspect of reality is a product of our faculties of understanding 

and sensibility, and it results from the collaborative work of our faculties of sensibility 

and understanding. 

A-priori, in general means the kind of knowledge that is independent of our 

experience. A-posteriori means the kind of knowledge that is obtained through 

experience. Two essential properties of a-priori judgments are necessity and 

universality; all a-priori judgments are necessary and universal. The necessary 

judgment is that the negation of which does not make any sense and therefore not 

possible. Similarly, if a judgment is universal, it means that no exception to that can 

be provided. These two criteria go hand in hand with one another and, for Kant, are 

not separable. A-posteriori judgments, on the other hand, are contingent and 

comparatively universal. Contingent judgments are that the negation of which are 

possible both in thought and in reality. Comparative universality, on the other hand, is 

the criterion which enables the possibility of the occurrence of certain exceptions to 

those judgments. Comparative universality can only be achieved through induction, 

but a strict universality through deduction. 

Certain propositions that belong to natural sciences can only be justified on 

contingent grounds and can only achieve a comparative universality. The proposition, 

our solar system has eight planets, is a contingent proposition. It is contingent because 
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there remains no reason not to think of the possibility of our solar system having more 

or less planets. Who knows what is going to happen to our solar system and the planets 

in it in the future? This is also why it can be justified inductively; we can only 

assumethat the future is going to resemble the past and thereby conclude that our solar 

system is going to have the number of planets that it currently has in the future. But 

we cannot make this statement with hundred percent certainty. 

Mathematics, on the other hand, is considered to be an a priori science by Kant. 

An elaborate discussion as to why mathematics is a-priori will be given in the 

subsequent sub-sections of this chapter. 

 

3.2. The Distinction between Analytic and Synthetic Judgments 

 

Perhaps what needs to be laboriously scrutinized, so as to achieve a thorough 

understanding of the nature of the synthetic a-priori propositions, is the famous 

distinction that Kant made between analytic and synthetic judgments. There are two 

criteria, which can be indirectly inferred from Kant, that exist for distinguishing 

analytic judgments from synthetic judgments. 

 The first criterion can be entitled as containment criterion. All judgments 

come in the standard subject-predicate form. If the predicate is necessarily thought, or 

in other words, contained in the subject, then the judgment is entitled as analytic. This 

containment relation between the predicate and the subject is the identity relation that 

takes place between them. In other words, the predicate becomes nothing but a 

restatement of the subject term through concepts that are already contained within 

itself. These concepts, through which the subject is rephrased, are concepts that 

collectively constitute the subject. If we imagine a taxonomy in which our subject has 
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a definite place among other taxa, then the concepts that belong to the predicate belong 

to a higher-level in the same conceptual hierarchy, that is to say, they represent a more 

general taxa under which the subject becomes a species. Consider the following 

example “all bachelors are unmarried men”. Let’s denote the concepts by using 

brackets, so <bachelor> refers to the concept of bachelor. It is clear that in the 

taxonomy of concepts, <bachelor> and <men> belong to a more general (higher) level. 

So the formation of <bachelor> necessarily requires first the formation of <men> and 

<unmarried>. Only with the combination of those two concepts, <bachelor> can be 

formed.  

In addition, in the synthetic judgments, the predicate is not analytically 

contained within the subject; it is only connected with the subject. This indicates that 

no matter how much the subject is analyzed into its constituent concepts, the predicate 

which is connected to it can never be found within it; the predicate constitutes wholly 

and addition to the given subject. The example “the sky is blue” is an instance of a 

synthetic judgment; the predicate “is blue” is connected to the concept “sky” which 

is not originally thought within it. In this example, the connection between the subject 

and the predicate is learned through experience. It is the experience which forms the 

ground of such connection. We learned that the sky is blue through observation. 

The second criterion is the reducibility of judgments to the principle of non-

contradiction. In fact, the second criterion is just a way to be assured of the first 

criterion through subjecting the containment relation to the principle of non-

contradiction and see whether the containment relation is analytic or synthetic. 

Analytical judgments can be known through the principle of non-contradiction. This 

implies that in analytic judgments, the denial of the predicate and the affirmation of 

the subject always yield a contradiction. This makes sense; for the subject is 
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necessarily constituted through the concepts that belong to the predicate in analytic 

judgments, so the negation of the predicate amounts to the negation of the concepts 

that necessarily and collectively constitute the subject. This inevitably yields a 

contradiction. But the same principle; the principle of non-contradiction, is not the sole 

criterion through which the knowledge is attained in the synthetic judgments; the 

comprehension of synthetic judgments requires more than the principle of non-

contradiction. The same example, “the sky is blue” can be given to explain why it is 

the case. The predicate “is blue” does not stand in a necessary connection with the 

subject “sky”. This is why, the negation of the predicate does not provide any cue for 

anyone who is not acquainted with the connection between the predicate and the 

subject in one’s experience; it is merely a contingent truth that the sky is blue. The sky 

could have been red as well. The truth-value of this statement depends on a variety of 

contingent conditions. 

All analytical judgments are explicative, that is, unable to add anything new to 

our knowledge of the subject through the predicates attached to it. Because, as it was 

discussed above, all the concepts inherent in the predicate are already contained within 

the subject. But synthetic judgments, in contrast to analytic judgments, are ampliative. 

This means that they expand our knowledge and avail to us new connections. 

In conclusion, the distinction between a-priori/a-posteriori concerns the origin 

of our knowledge. The distinction between analytic/synthetic, on the other hand, 

concerns the content of our knowledge. A-priori judgments have their origin in the 

mind. Kant clearly stated that “we can know a-priori of things only what we ourselves 

have put into them” (Kant, 2007, Bxviii/Bxix). It has already been discussed in the 

previous sections that Kant resorted to the faculty of our pure intuition to locate the 

true origin of mathematical knowledge. So mathematical judgments are a-priori; they 
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are not derived from experience, they carry with them a strict necessity and 

universality which are not to be found in the empirical judgments. But what about the 

content of mathematical knowledge? As it was briefly discussed at the outset of this 

chapter, he was not sided with rationalists as to the content of mathematical 

knowledge; he did not accept the view that the propositions of geometry, for example, 

could be discovered through discursion, that is to say, through conceptual analysis. So 

the propositions of mathematics must be synthetic. 

 Thus the indispensable conclusion that is to be drawn from it is the following: 

mathematics is synthetic a-priori. But what exactly does it mean for mathematical 

propositions to be synthetic a-priori? The following section is mainly focused on this 

particular question. 

 

3.3. Mathematics as a Synthetic A-Priori Science 

 

Mathematical judgments are both a-priori and synthetic. They provide us with 

ample examples of a-priori judgments, for they are necessary and universal, that is to 

say, the negation of which are not possible and there occurs no exception to them. 

According to Kant, the proposition, for instance, the sum of the interior angles of a 

triangle is equal to the sum of two right angles, is a necessary and universal 

proposition. It is necessary, for the negation of it cannot be comprehended and 

therefore not possible, it is universal, for there exists no triangle, the sum of its interior 

angles of which are larger than, or smaller than the sum of two right angles.  

Mathematical judgments are also synthetic; this means that no matter how hard 

one analyzes, for example, his concept of triangle, one can never find that its interior 

angles add up to two right angles. The mathematician needs to go beyond the given 
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concept and make some constructions to be able to see that the concept of triangle can 

be predicated of the given property. Kant explained this procedure followed by the 

geometer as follows:  

He at once begins by constructing a triangle. Since he knows that the sum of 

two right angles is exactly equal to the sum of all adjacent angles which can be 

constructed from a single point on a straight line, he prolongs one side of his 

triangle and obtains two adjacent angles, which together are equal to two right 

angles. He then divides the external angle by drawing a line parallel to the 

opposite side of the triangle, and observes that he has thus obtained external 

adjacent angle which is equal to an internal angle. In this fashion, through a 

chain of inferences guided by throughout by pure intuition he arrives at a fully 

evident and universally valid solution of the problem. (Kant, 2007, 

A716/B744) 

 

Figure 1 

 The logical analysis of the concepts cannot account for the connection between 

the subject and the predicate of the given proposition; the relation between the subject 

and the predicate can only be discovered through chain of inferences guided by pure 

intuition. The constructions are necessary for one to make the necessary synthesis 

between the subject and the predicate and to connect them.  

 This makes mathematics, a true science, for every proposition is achieved 

through a synthesis guided by pure intuition which expands our knowledge. 

Mathematics is more than explicating and making clear what has already been given 
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to us; had it been the case, it would have been nothing other than a gigantic tautology 

in which nothing new is said. 

 But what is this construction in pure intuition? Why does geometry require 

such an act? The answers to these questions are immediately tied with the relation 

between our intuition of space, time and mathematical practice. Indeed; the very 

possibility of the knowledge of mathematics is dependent upon the faculty of 

sensibility. That being said, two important questions need to be addressed at this point; 

first, how are synthetic a-priori judgments possible? And second, what exactly does 

construction in pure intuition mean? Our inquiry is going to begin with the former 

question. 

 

3.4. Forms of Sensibility: Pure Intuition of Space and Time 

 

Kant believed that we have forms of sensibility (pure intuition of space and 

time) by virtue of which the various properties of appearances are determined 

completely a-priori. “In space”, Kant states, “…their shape, magnitude and relation to 

one another are determined.” (Kant, 2007, A23). Every object of experience must be 

located in space and time necessarily. There simply exists no object which do not 

appear as not belonging to a particular space or time. So space and time are responsible 

from ordering and organizing our manifold of sensations; therewith, the various spatio-

temporal relations among appearances are possible only in virtue of this pure faculty 

of sensibility.  

Kant aimed to show, in The Critique of Pure Reason, that the necessity and the 

universality of the propositions of geometry, and the very possibility of the 

construction of the concepts of geometry, strictly follows from the a-priority of our 
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pure intuition of space. Geometry “is a science which determines the properties of 

space synthetically, and yet a-priori” (Kant, 2007, B40/B41). To do that, Kant adopted 

the synthetic method in The Critique of Pure Reason. Synthetic method, as utilized by 

Kant, is that which derives the possibility of the necessity 5and universality of the 

judgments of a particular domain of knowledge, such as geometry, from the faculties 

of the mind which are a-priori. So it is a progressive method6 in which one starts from 

the original resources of cognition (such as from pure intuitions and understanding) 

towards a particular domain of knowledge through the synthesis of the elements that 

belong to that cognition. This is why he claims that the modal status of the knowledge 

of Euclidean geometry is dependent upon that of our pure intuition of space. The 

progression from our pure forms of intuition to the necessity and universality of the 

geometrical knowledge is in accordance with the synthetic method; for without this 

pure intuition of space, it is not possible to account for from whence the necessity and 

universality of the propositions of geometry arise. This is supported by Kant stated 

that “the apodictic certainty of all geometrical propositions, and the possibility of their 

a-priori construction, is grounded in this a-priori necessity of space.” (Kant, 2007, 

B39) 

 
5 The modal ambiguity may strike the reader here. But the reader must not forget that Kant was mainly 
interested in the conditions of the possibility of knowledge in general. So, what must be shown first is 
the possibility of having a capacity or a faculty by virtue of which the necessity and the apodictic 
certainty of the propositions of geometry can be sown. 

6 In Prolegomena, however, Kant uses the regressive argument to show that there must be an a-priori 
source of cognition of space given that geometry is a science which demonstrates its results 
necessarily and a-priorily through constructions. The regressive method goes by the name of the 
analytic method. Kant can be accused of using the analytic method to justify the a-priority of our 
intuition of space and thereby committing a fallacy by reasoning in a vicious circle, for, in The Critique 
of Pure Reason, he originally demonstrated the a-priority of our intuition of space as a necessary 
condition for the science of geometry in the first place. In the literature, this argument goes by the 
name of ‘Argument from Geometry’.  A detailed analysis of this methodological distinction and how 
should Kant’s argument from geometry be correctly treated can be found in Lisa Shabel’s article Kant’s 
Argument from Geometry. 
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The pure frameworks of space and time, postulated in The Transcendental 

Aesthetic, account both for the possibility of geometry as a synthetic a-priori science, 

and the possibility of the necessary applicability of that science to the objects of senses. 

By this reason, the postulation of an a-priori framework enabled Kant to tackle the 

long unsettled question of how mathematics can be applied to the nature. The proper 

mathematization of objects of senses is said to be accomplished with respect to these 

forms of intuition. The geometric determination of the relations among appearances, 

and the determination of their figurative properties (e.g., their geometric form) is said 

to be accomplished in the pure intuition of space and time. What follows from this is 

that geometry find its transcendental applicability to the objects of senses. In brief, 

Kant offered a “transcendental explanation of the mathematical nature of the world” 

(Cantu, 2018), and he achieved this by locating the seat of the possibility of the 

geometrization of the nature within the subjective constitution of the human mind, that 

is, in pure intuitions.  

 The reader, at this point, must be mindful of the modern distinction between 

pure geometry and applied geometry and how it relates to Kant’s theory of geometry 

even though this distinction has not been explicitly stated within the works of Kant 

and can only be inferred indirectly.  Had Kant limited his discussions solely to the 

possibility of the science of geometry and its a-priori and synthetic nature, the 

application of geometry to experience, and therefore its objective validity (reality) 

would have begged and explanation. Consider the following passage:  

Through the determination of pure intuition we can acquire a-priori knowledge 

of objects, as in mathematics, but only in regard to their form, as appearances; 

whether there can be things which must be intuited in this form, is still left 

undecided. Mathematical concepts are not, therefore, by themselves 

knowledge, except on the supposition that there are things which allow of being 

presented to us only in accordance with the form of that sensible intuition. 

(Kant, 2007, B147) 
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In brief, Geometry determines space both a-priori and synthetically. The determination 

is a-priori, for the intuition upon which the science of geometry is predicated is a-

priori. It is synthetic, for the propositions of geometry, as was shown in the previous 

chapter, can only be obtained by going beyond the given concepts, and this is achieved 

through certain procedures involving constructions7 that takes place in a-priori 

intuition. 

Having displayed the tripartite modal relation between geometry and space and 

spatial perception, what needs to be shown is the transcendental ideality of space as 

being a pure form of sensibility, for only if the space is transcendentally ideal, the 

attainment of synthetic a-priori knowledge with regard to it becomes possible.  

The philosophy of space before the time of Kant had long been occupied by 

and centered on two overarching conceptions: absolutism and relationism. The former 

is the view that space and time exist independently of all possible objects and object 

relations, and the latter is the view that space and time depend for their existence on 

possible objects and relations. The question put forward by Kant, in the §2 of 

Transcendental Aesthetic, as to the origin of space and time is given as follows: 

What, then, are space and time? Are they real existences? Are they only 

determinations or relations of things, yet such as would belong to things even 

if they were not intuited? Or are space and time such that they belong only to 

the form of intuition, and therefore subjective constitution of our mind apart 

from which they could not be ascribed to anything whatsoever?” (Kant, 2007, 

A23/B38) 

 

Here, Kant started his investigation as to the nature of space and time with an 

ontological question; he asked what kind of entities space and time are. He wanted to 

 
7 In fact, the construction that takes place in pure intuition of space is not only a spatial construction; 
it is rather a spatio-temporal construction which requires the transcendental ideality of both space 
and time to yield a-priori synthetic knowledge. This will be discussed more elaborately in the 
subsequent section. 
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know whether they subsist on their own, or inhere in things, or none of them. So the 

opening of the passage suggests that the discussion was mainly concerned, at this 

stage, with the ontological status of space. The ontological concerns of Kant can be 

restated as his concerns as to the origin of our representation of space. By locating the 

space and time in our minds as pure forms of sensibility, Kant avoided any 

commitment to the existence of an absolute space and time, a view propounded by 

Newton and Newtonians, and to the existence of space and time as relations between 

things in themselves, a view purported by Kant to have been propounded by Leibniz. 

He did not think that this origin lies outside of the faculty of pure sensibility. He clearly 

stated in the conclusion part of §3 that space “does not represent any property of things 

in themselves, nor does it represent them in their relation to one another” (Kant, 2007, 

B42/B43). So all the doors for the transcendental reality of space in the form either as 

an absolute empty container of things, or as relation between things are closed.  

Both standpoints were criticized by Kant for several reasons. According to the 

former view; entitled as absolutism, space is a totally mind-independent entity, capable 

of subsisting on its own. The question, then, naturally arises: how is it that one knows 

with indubitable certainty that points of space exist independent of any material 

object? The question can be evaluated both from an ontological and an epistemological 

standpoints. From an ontological standpoint, the claim that space, as no-thing, exists 

is a bizarre claim. Kant states that the proponents of this view “have to admit two 

eternal and infinite self-subsistent non-entities, which are there yet without there being 

anything real.” (Kant, 2007, B56/A40) From an epistemological standpoint, given that 

one cannot obtain any empirical information by any means about these points, it is a 

rightful question to ask. There seems to be an insurmountable epistemological barrier 

that needs to be overcome by the proponents of the view of space, as an empty 
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container. Empirically speaking, the problem is that space is causally inert, it does not 

affect our sensory organs and consequently it is not causing any sensible effect. This 

is a view not acceptable by Kant, for it is committed to the belief that the knowledge 

of a thing as it is in itself is possible even though there seems to be no way to be 

acquainted with it in a possible experience. The proponents of this view, 

notwithstanding the insurmountable ontological and epistemological problems they 

are facing, were committed to the transcendental reality of space and time by locating 

the origin of space outside our form of intuition.  

 The latter view, entitled as relationism, is the view that space and time are 

nothing but relations among objects. According to this view, the existence of space is 

dependent upon the relations of objects, so without there being the experience of the 

objects first, the idea of space cannot arise in us. Thus, it can be said that the perceiving 

of appearances is prior to the existence of space. This means that space is not 

something over and above the objects of experience. In brief, without there being 

objects; space would lose its meaning and could not exist.  

That the space is transcendentally real as a system of relations between things 

as they are in themselves was propounded by Kant to be the position of Leibniz. 

Leibniz held that space and time are phenomena bene fundata. Phenomena bene 

fundata, when translated from Latin to English, means well-founded phenomena. 

Well-founded phenomena are the ways in which the various activity of monads8 

appears to us in a confused manner. Space and time, as being confused representations 

of monads, are in fact real and thus representative of things in themselves. The only 

 
8 Monads are mind-like simple substances which are the ground of all corporeal phenomena in 
Leibniz’s philosophy. A detailed discussion as to the nature of monads takes place in Leibniz’s 
Monadology. 
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difference between monads and phenomena is that there exists a degree of clarity and 

distinctness in the idea of them; monads are the supreme reality, but phenomena are 

the confused representations of these monads and their various activity. But they are 

the one and the same reality for Leibniz; the difference between them comes only in 

degrees, not in kind, as Kant propounded. So space and time, under Leibniz’s 

treatment, becomes a real, yet confused representation of the activity of the monads, 

which is interpreted by the subject as relations between them, and the transcendental 

distinction between appearances and the reality is lost. Kant, by locating the origin of 

space in our faculty of pure sensibility, secured the transcendental distinction between 

appearances and reality and thereby granted that our sensibility is not a confused 

representation of things as they are in themselves. It is clearly explicated by Kant in 

the following passage taken from §8 in The Critique of Pure Reason:  

…all our intuition is nothing but the representation of appearance; that the things 

which we intuit are not in themselves what we intuit them as being, nor their 

relations so constituted in themselves as they appear to us, and that if the subject, 

or even only the subjective constitution of the senses in general, be removed, the 

whole constitution and all the relations of objects in space and time, nay space and 

time themselves, would vanish. (Kant, 2007, A42/B60) 

 

This, as a consequence, do secured the necessary and universal progression of the 

science of geometry. Had space and time had been entities in themselves, either as 

substances or as relations, how could we legitimately confer a-priority and apodictic 

certainty to the geometric propositions?  Kant rightly raised this question. Under this 

view, the apodictic certainty and necessity of geometrical propositions could not have 

been justified; for they would have been nothing but a set of general relations 

abstracted from experience, which can only grant us a-posteriori knowledge. Even if 

we do concede that the geometry is a necessary and universal science; it’s relation with 
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appearances would remain problematic. This is brilliantly summarized by Kant as 

follows: 

 

…But since they are unable to appeal to a true and objectively valid a priori 

intuition, they can neither account for the possibility nor bring the propositions of 

experience into necessary agreements with it. (Kant, 2007, A41) 

 

It is only in virtue of having their seat in the subject, as was discussed in the section 

about the nature of a-priori judgments, could the universality, necessity and apodictic 

certainty of the propositions of geometry have emerged along with its necessary 

agreement with the propositions of experience. To show that space actually has its seat 

in the subject and is in fact transcendentally ideal, Kant also stated the following: 

 

Space is not an empirical concept which has been derived from outer 

experiences. For in order that certain sensations be referred to something 

outside me (that is, to something in another region of space from that in which 

I find myself), and similarly in order that I may be able to represent them as 

outside and alongside one another, and accordingly as not only different but as 

in different places, the representation of space must be presupposed. (Kant, 

2007, B38/B39) 

 

This means that we cannot read from any appearance anything spatial; the spatiality is 

something that we bring into the appearances. The assumption that those spatial 

relations are derived from experience begs the question for Kant; for any ascription of 

polyadic relational predicates to appearances already presupposes the idea of space, so 

the spatiality of appearances cannot be mentioned without first having an idea of space, 

thus this idea is not derived from experience. In Patricia Kitcher’s words:  

Kant may also be noting that Leibniz's own position in the correspondence with 

Clarke suggests that our representation of space involves a priori elements. Leibniz 

claims that we perceive objects in various positions relative to one another. We 

then abstract from the objects and think of the positions themselves, filling in the 

currently unoccupied places in the perception, to reach the intellectual idea of 

space as a system of positions for actual and possible objects. Thus Leibniz seems 

committed to the view that the creative subject is responsible for elements in our 

representation of space. So Kant's point may also be that it is inconsistent for 

Leibniz to characterize [the representation of] space as a product of the creative 
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activity of the subject and then to claim to have shown that it depends on actual 

objects encountered in perception. (Kitcher, 1987, p.234) 

 

It is hard to be oblivious to the apparent symmetry between the content of our 

geometrical knowledge and the content of our representation of space. Geometry, after 

all, is the science which study space. Just as the geometrical knowledge could not be 

obtained discursively, that is, through the analysis of the given concepts, so our 

representation of space could not be obtained in the same way, so by virtue of its 

relation to our pure intuition the content of geometry becomes synthetic. It is within 

that pure framework that we construct the objects of geometry. According to another 

view affiliated with relationism9 our representation of space could in fact be an idea 

that belongs to reason itself to give the phenomena a spatial and temporal order. 

According to this view, the mind generates notion of place, or distance to make an 

ordered, conceptual representation of the manifold of appearances perceived by the 

sense organs. At this particular juncture, Kant raised his second criticism towards 

relationist accounts of space. His second criticism is about the content of those 

relations. He objected to the view that the general concept of space could be a concept 

(or idea) that belong to reason, and thereby rejected the view that space is nothing but 

a general concept of relations.   

It is not, however, altogether clear what it really means for space to be a non-

conceptual representation, and how Kant support his thesis that space is not discursive. 

To understand why exactly the origin of our representation of space is located under 

 
9 Leibniz may said to have held two distinct conceptions about space which may be overlooked by 
Kant. Kant accused Leibniz, on the metaphysical grounds that he equated the representation of space 
and time as confused representations of things-in-themselves, therefore from Kant’s lenses, he 
committed a transcendental fallacy. But Leibniz also held that space is an idea that belongs to the pure 
understanding. In several passages, in his New Essays, he held that space is an idea of relation that 
belong to the pure understanding. See Gottfried Leibniz, New Essays for more. 
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the faculty of pure sensibility rather than in understanding, the differences between 

intuitions and concepts must be elaborately discussed. Two of the most important 

features of intuitions are that they are singular, in opposition to being general, like 

concepts, and immediate, that is, their knowledge is not mediate and dependent upon 

the knowledge of other concepts. Intuitions are singular in the sense that they can be 

ostensibly referred to as something that is out there; as outside of our bodies in a 

particular spatio-temporal region. Space is the condition of the possibility of any kind 

of delineation or ostension; it is by virtue of our outer sense that we are able to point 

towards things and refer to them as out there. There is only one unique space in which 

every object appears. So it is a singular framework. When we talk about diverse spaces, 

what we actually think of is the parts of the same unique space. Intuitions are also 

immediate in that being aware of their presence do not require any mediation; that is 

to say, the object is no longer indirectly referred to through concepts. In brief, 

immediacy is related to the awareness of the actual presence of any object.  Our 

knowledge of space and the parts of space is not known mediately, that is, through the 

mediation of other concepts. We are immediately aware of the presence of all possible 

locations in space. Through these two important criteria, Kant was able to relate our 

representation of space, and as a consequence of it, our knowledge of mathematics, to 

non-conceptual elements. 

What remains to be shown is how space and time, as pure forms of our 

intuition, satisfy these two criteria. The right place to begin this proof is to point out 

the discrepancy between intuitive ways of knowing and conceptual ways of knowing. 

The laws of intuitive knowledge comes into friction with the laws of understanding 

and this poses certain difficulties when an intuitive representation is forced by the 

understanding to be represented conceptually. What is evidently different in between 
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intuitive representation and conceptual representation is that the mereological10 

structure of the former is exactly the opposite of that of the latter. This difference with 

regard to their mereological structure is explicated both in The Metaphysical 

Exposition of Space, and in The Form and Principles of The Sensible and Intelligible 

World. When the part-whole relation of these two different kinds of representation is 

considered, it is seen that the whole precedes its parts in an intuitive representation, 

whereas the parts precede the whole in a conceptual representation. So the totality of 

an intuitive representation is given prior to its parts; whereas the totality of a 

conceptual representation demands to be constructed from its parts. The third 

proposition of The Metaphysical Exposition of Space goes as follows: 

Space is not a discursive or, as we say, general concept of relations of things 

in general, but a pure intuition. For, in the first place, we can represent to 

ourselves only one space; and if we speak of diverse spaces, we mean thereby 

only the parts of one and unique space. Secondly these parts cannot precede 

the one all-embracing space, as being, as it were, constituents out of which it 

can be composed; on the contrary, they can only be thought as in it. Space is 

essentially one, and the manifold in it, and therefore the general concept of 

spaces, depends solely on the introduction of limitations… (Kant, 2007, A25) 

 

To support this claim that the all-embracing space is given prior to its parts, Kant 

immediately recurs to the problems that occur in trying to represent it conceptually:  

Space is represented as an infinite given magnitude. Now every concept must 

be thought as a representation which is contained in an infinite number of 

different possible representations (as their common character), and which 

therefore contains these under itself; but no concept, as such, can be thought 

as containing an infinite number of representations within itself. It is in the 

latter, however, that space is thought; for all the parts of space co-exist ad 

infinitum. Consequently, the original representation of space is a-priori 

intuition, not a concept. (Kant, 2007, B40) 

 

 
10 Mereology is a branch of philosophy which studies the relationship between the parts and the 
whole.  
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The understanding of these passages is difficult even by Kantian standards. The 

decryption of the passage requires a clear understanding of what Kant possibly have 

meant by two different kinds of containment relations; it seems that to be contained 

within something is not to be confused with to be contained under something. One of 

the most illuminating interpretations to make sense of the difference between those 

two distinct containment relations comes from Michael Friedman. According to 

Friedman, “B40 operates with Kant’s particular notions of extension and intension” 

(Friedman, 1992, p. 67). By extension, it should not be understood, however, the 

modern usage of the term.  Friedman states that “the modern notion of the extension 

of a concept was completely foreign to Kant” (Friedman, 1992, p.68).  Extension, 

according to the way it is generally used and accepted in the modern literature, is a set 

of particular objects that fall under a given concept. So, according to this definition, 

the particular tables are the extension of the concept of table. But here, extension of a 

concept is not the particular objects which partake under a concept because they share 

a certain property; the extension is itself a concept which falls under another in a given 

conceptual taxonomy. The concepts; <bachelor> and <unmarried>, for example falls 

under the more general concept, <men>. So those concepts are extensions of <men>. 

The intension of a concept, however, consists of those concepts which constitutes it. 

So the same concept, the concept of man has this intension: <rational>, <animal>, 

<material> and <created being>. In other words, the intension of a concept is the 

definition of a concept with reference to the higher concepts under which the first 

concept is subsumed. So the concept of men contains within itself <rational>, 

<animal>, <material>, and <created being>. 

No concept contains within itself, as do spatio-temporal quantities, infinitely 

many representations. If <bachelor> contained within itself infinitely many 
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constituents, the analysis would never terminate. This would practically render our 

concept unintelligible, for in order to comprehend a concept, we must first comprehend 

the concepts which collectively constitute it. So, in order for our concept to be rendered 

intelligible, the number of concepts that collectively constitute it (intensions) must be 

finite. If space is to be represented conceptually, then the particular instances (regions) 

of space must be considered as intensions of the general concept of space. But every 

instance of space, due to the fact that space is infinitely divisible, already contains an 

infinitely many sub-regions, and those sub-regions infinitely many other regions, and 

this goes on ad infinitum. Accordingly, neither the synthesis of those quantities, that 

is, the progress from the given regions, would give us the totality of space, nor the 

analysis of them, that is, the regress from the given part to its constituents, would come 

to an end and terminate in a simple part which is not a part of anything else, if we were 

to represent space conceptually. Therefore, when it comes to the representation of 

continuous quantities11, the only way to represent them is through intuition. Only our 

intuition is able to give us an object immediately and in a singular way. According to 

Kant, his argument from infinity provides us with a clear intuitive grasp of the one and 

unique space, so he argues that space must be a form of intuition. Because when we 

attempt to represent diverse spaces, we generally assume those diverse spaces, as Kant 

states, a part of a one and all-embracing unique space. What follows from this is the 

following: space is both singular and immediate. It is immediate, for no mediation is 

required for us to intuit space; we have a direct relation to it; it is presented to us 

directly. It is singular, for its parts is not given prior to the whole of it; on the contrary, 

 
11 Space and time, for Kant, are quanta continua, which are given as enclosed within limits. They are 
given within limits because “any portion of space must be composed of smaller portions, and therefore 
can’t be ‘simple’ in the sense of not having parts” (Kant, 2017). Therefore, the only simple items in 
space are not portions, but limits, which can be divided further into simpler elements. 
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its parts can only be thought within it. When it comes to the sense impressions that we 

receive through our sense organs, that we have an immediate relation to them and that 

they are singular seem to be so obvious that we are not obliged by an internal 

mechanism to offer any kind of proof. But when it comes to our representation of 

space; since the form itself does not reach us as impressions do, certain justifications 

seem quite indispensable. And the argument was provided by Kant to ease the doubts. 

In conclusion, the space is neither absolute, nor relational; the emphasis on the 

absolute/relational debate has been shifted into ideal/real. It is also not a conceptual 

representation, but an intuition. Geometry, as an action of the geometer, takes place in 

this pure intuition completely a-priori. But as was laid out in the previous sections, we 

cannot rest in these pure intuitions if we are to produce mathematical knowledge; we 

also have to recognize what we actually intuit under concepts. Kant famously asserted 

that “to construct a concept is to present the intuition corresponding to it a priori" 

(A713/B74). If the concept has no intuitive content, it is empty, therefore it must find 

its referent in the pure intuition. The process of the formation of geometrical 

knowledge was brilliantly summarized by Kant in The Critique of Pure Reason, 

Transcendental Deduction. The construction procedure is what remains to be fully 

explicated in this chapter in the following section. 

 

3.5. Construction in Pure Intuition 

 

In Transcendental Deduction, Kant speaks of a three-fold synthesis in order to 

account for what actually takes place within the mind during the process of synthesis 

and the generation of concepts. Even though TD aimed at providing a transcendental 

ground for the deduction of the pure concepts of the understanding, it nonetheless 
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provides the reader with illuminating insights as to how construction of the 

geometrical concepts in pure intuition takes place. So the analysis of this three-fold 

synthesis which essential to obtain any knowledge whatsoever will shed a light into 

our understanding of what necessarily takes place in the mind of a geometer during 

the procedure of construction. 

The mentioned three-fold synthesis is composed of synthesis of apprehension, 

synthesis of reproduction and lastly, the synthesis of recognition. All these three-

syntheses take place a-priori in mind, therefore provide the transcendental ground for 

the possibility of knowledge. Every synthesis; be it a synthesis of outer representations 

or inner representations, must be carried out according to the conditions of our inner 

sense, which is entitled as the pure intuition of time by Kant. Therefore, what must be 

considered first is the temporal nature of our consciousness; for all representations, be 

it outer or inner, necessarily belong to inner sense as Kant states in Transcendental 

Aesthetic. Thus all our representations are modifications of inner sense; by means of 

our inner sense, representations are intuited successively, one succeeding the other in 

time. First and foremost, what is needed for a proper cognition is to unify our 

representations that succeed each other into a whole so that they be represented as a 

single representation. The synthesis of apprehension aims at providing unity for our 

representations; due to the temporal nature of our consciousness, the processing of 

every representation requires time, and through the synthesis of apprehension, the 

synthetic unity of the manifold, given successively in time as a modification of inner 

sense, is constituted. A spatio-temporal manifold, which we are receptive of due to our 

pure forms of intuition, is unified under a single representation and represented as a 

whole through this synthesis. Kant states that we should never have a-priori 

representations of space and time without the synthesis of apprehension. Because a 
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geometer constructs objects in the pure intuition of space through delimiting the one 

and unique space. This means that the space has now become itself the object so as to 

be determined; the manifold in it must be subjected to the conditions of the inner sense 

and unified. 

Moving onto the synthesis of reproduction, we witness that Kant divided the 

synthesis of reproduction into two; the one which is carried out in the empirical 

imagination, and the other which is carried out in the transcendental imagination. 

Since the geometry proper is predicated upon the one which is exercised a-priori, the 

focus of our attention must be directed to the analysis of the synthesis that takes place 

in the transcendental imagination. For Kant, there must be something which, as the a-

priori ground of the necessary synthetic unity of appearances, makes their reproduction 

possible. That ground is none other than the transcendental imagination. In the 

transcendental imagination, the synthesis of production takes place. It is that which 

enables us to retain previously constructed representations in our imagination in order 

for us to be able to connect them with others that comes after them in the given sequel. 

Kant provides an example as to what really takes place in our imagination when we 

are making the synthesis of production:  

I seek to draw a line in thought… obviously the various manifold 

representations that are involved must be apprehended by me in thought one 

after the other. But if I were always to drop out of thought the preceding 

representations (the first parts of the line …), and did not reproduce them while 

advancing to those that follow, a complete representation would never be 

obtained… (Kant, 2007, A102/103) 

 

So a geometer successfully keeps in his mind the previous parts of a line (points) that 

he constructed in order to carry out one’s construction and be able to represent oneself 

a line. Without this power of imagination, he would always drop out of thought and 

never be able to represent a particular whole (say, a line). This activity of drawing was 
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given a different nuance in the B-Deduction. It was stated as this drawing is none other 

than the figurative representation of time, whereby the manifold of outer intuition is 

determined by means of our inner sense:  

We cannot think a line without drawing it in thought… Even time itself we 

cannot represent, save in so far as we attend, in the drawing of a straight line 

(which has to serve as the outer figurative representation of time), merely to 

the act of synthesis of the manifold whereby we successively determine inner 

sense, and in so doing attend to the succession of this determination in inner 

sense. Motion, as an act of the subject (not as determination of an object), and 

therefore the synthesis of the manifold in space, first produces the concept of 

succession. (Kant, 2007, B155) 

 

Kant confronts the reader with a very interesting and puzzling part; he talks about 

motion but apparently in a different sense. To a reader who is ready to come to a hasty 

conclusion, it might sound as if Kant has blended certain empirical elements into the 

construction of a figure. But as it was carefully explained in the footnote below the 

passage; the motion as an act of a subject is not the same thing as motion as a 

determination of an object, the latter belongs to an empirical science, but former to a 

pure science, which is entitled as phoronomy in Kant’s Metaphysical Foundations of 

Natural Sciences (1786). Kant noted the following: “Motion, however, considered as 

the describing of space, is a pure act of the successive synthesis of the manifold in 

outer intuition in general by means of the productive imagination.” (Kant, 2007, B156) 

This proves that the construction of the geometrical concepts are not only spatial, but 

spatio-temporal. The temporal element is the necessary ingredient in every spatio-

temporal construction, for it alone makes possible the act of drawing in the first place 

and the synthesis of the manifold in intuition. 

The last and the most important ingredient of the three-fold synthesis is the 

recognition of the manifold under a concept. In A-Deduction, Kant opens up the 

section as follows: “If we were not conscious that what we think is the same as what 
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we thought a moment before, all reproduction in the series of representations would 

be useless.” (Kant, 2007, A103) The passage seems to be solely concerned with the 

identity of our representations; for without it, neither apprehension, nor reproduction 

would make any sense, for the representations would crowd up in the soul, as put by 

Kant, without being in a thorough connection with each other. Every representation 

thereby generated in time would seem to be a new representation without such a 

function of the understanding. The rule whereby we connect all representations with 

one another, and become conscious of the identity of them in time is none other than 

the synthetic unity of consciousness in the synthesis of the manifold of representations. 

This synthetic unity of consciousness is the transcendental ground of the unity of the 

synthesis of all manifold of intuition. Kant defines this synthetic unity as “pure original 

unchangeable consciousness” which goes by the name of transcendental 

apperception. The act through which the mind is capable of becoming conscious of 

the identity of a function whereby it synthetically combines the manifold into a single 

general representation which is generically identical to itself is the same act through 

which the consciousness of a manifold of intuition that pertains to its identity through 

time is made possible. So every act of unification and identification (be it the act of 

bringing various representations under a general representation, or the act of bringing 

together various intuitions) is necessarily predicated upon the original transcendental 

unity of consciousness. Through transcendental apperception, the awareness of the 

unity of the concept under which particular representations are subsumed, and the 

unity of the manifold of intuition which is successfully reproduced and apprehended 

made possible.  

The analytic unity of consciousness is the same consciousness which is found 

in many distinct representations (one-in-many). It is the same “I” that we find in 
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distinct representations, therefore the original transcendental apperception has an 

analytic unity. But in order for us to be able to represent to ourselves the identity of 

this consciousness present in distinct representations, we must unite the given 

manifold of representations synthetically in one consciousness due to the temporal 

nature of the consciousness. The temporality of our consciousness demands that we 

do this necessary synthesis of the manifold given successively in time in order to 

obtain a unitary and single consciousness of it. This is why the analytic unity of 

consciousness, and along with it the analytic unity of concepts and logical forms of 

judgment, requires an active synthesis in time and brought into a synthetic unity 

(many-in-one).  

The synthetic unity of apperception is therefore the highest principle of all 

understanding and precedes all concepts of the understanding. In fact, it is by virtue of 

the synthetic unity of apperception that the unity of the pure form of logical judgments 

and the unity of given concepts that enter into possible judgments made possible. It 

simply is the supreme principle of all understanding.  

The consciousness of the homogeneity of the successive parts of a line, 

produced by the geometer in the transcendental imagination, has its ground in the 

synthesis of recognition, and therefore, in the transcendental unity of apperception. It 

is by virtue of the identification of the temporal parts as homogeneous the geometer 

can prove certain propositions in geometry, for without congruence relations in 

geometry, nothing can be proven. This is explicated by Kant along these lines: 

Consciousness of the synthetic unity of the manifold and homogeneous in 

intuition in general, in so far as the representation of an object first becomes 

possible by means of it, is, however, the concept of magnitude (quantum). 

(Kant, 2007, B203) 
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The pure concepts of the understanding are, then, used as a rule of the unification of 

the manifold of intuitions, and through that rule we are able to recognize every 

temporal part of a manifold, given successively, as an identical instance of the general 

concept of magnitude. The rule describes the identity of the function whereby the 

synthesis of the manifold is iterated completely in an identical manner to generate 

series of homogenous syntheses in time in the production of the instances of the 

concept of magnitude. Thereupon, the construction of all of the objects of geometry 

must be in conformity with the category of quantity which serves as a rule whereby 

the geometer become conscious of a homogeneous intuition.  

The necessary conformity between the produced manifold of intuitions in the 

imagination of the geometer and the concept whereby the same manifold in the 

imagination is unified under a generic whole is predicated upon the possibility of the 

subsumption of intuitions under concepts. It is by virtue of the pure schemata of the 

concepts that the intuitions are glued to concepts. A schema is nothing other than the 

transcendental determination of time which is both homogeneous to concepts and 

intuitions. This is because each category, when schematized, represent a different 

determination of time. The schemata, for Kant, “are thus nothing but a-priori 

determination of time in accordance with rules. These rules relate in the order of the 

categories to the time-series, the time-content, the time-order, and lastly, to the scope 

of time.” (Kant, 2007, B185). With this last gluing link, Kant was able to show, on one 

hand, the possibility of the subsumption of appearances under the respective geometric 

concepts12 (viz., <triangle>, <circle>, et. al) and on the other hand, the possibility of 

 
12 In fact, Kant opens this passage with an example from geometry to show that the construction of 
the geometrical concepts can be taken as a paradigm case of schematism. It is through constructing a 
figure in pure imagination (such as drawing a line in thought) that we make possible any geometrical 
concept. So, as Jørgensen put it brilliantly; “our capacity for producing images by means of schemata 
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subsuming them under the pure concepts of the understanding; especially under the 

concept of quantity.   

Taken this way, the schema of a given concept becomes the condition for the 

possibility of the construction of the very concept.  Through schematization, images 

are subsumed under their respective geometric concepts. The following passage 

brilliantly summarizes the point made by Kant:  

The image is a product of the empirical faculty of reproductive imagination; 

the schema of sensible concepts, such as figures in space, is a product and, as 

it were, a monogram, of pure a-priori imagination, through which, and in 

accordance with which, images themselves first become possible. These 

images can be connected with the concept only by means of the schema to 

which they belong. (Kant, 2007, A142)  

 

 

By ‘image’, what Kant simply equates the particular image of a triangle that we can 

form in our imagination with the image received through our sense organs. At the 

outset of this chapter, we entitled the former as mental image and the latter as sensible 

image. They both stand under the same rules prescribed by schematism. Schema, is 

the function which acts as a norm in prescribing the law-governed connection between 

the image and the concept. It is, to an important extent, the condition of the possibility 

of the image. Schema enables us to relate two images (as intuitions) as ‘homogeneous’, 

for both share the same spatio-temporal content, for both are constructed according to 

the same set of operations. The image is nothing other than the object, which is realized 

in the experience.  

The geometry is thus established as a pure a-priori science; Transcendental 

Aesthetic provided space as the necessary content of geometry, and Transcendental 

Logic provided the pure concepts which function as necessary rules in constructing 

 
can be seen as a transcendental condition for knowledge and objective representation.” (Jørgensen, 
2005, p. 3) 
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geometric concepts in the pure intuition of space. The mediation between sensibility 

and understanding is accomplished via imagination; it is through the transcendental 

imagination that the pure concepts of the understanding are schematized and made 

possible to be used in the science of geometry.  

The three-partite relation between space, geometry and our spatial perceptions are 

thus finally established. Space stands as the necessary pre-condition for both geometry 

and the geometrization of appearances. Without having first been acquainted with such 

a-priori framework, neither construction of any geometrical concept, nor the 

recognition of any appearance under those concepts be made possible. Through 

schematism of the pure understanding, appearances are subsumed under respective 

geometrical concepts; without concepts no knowledge is possible, therefore 

schematism of pure understanding, along with our pure intuition of space, is the 

necessary condition for the possibility of geometry. 

 

3.6. Summary 

 

Kant’s theory of geometry, as was tried to be shown in this lengthy chapter, is 

standing on three pillars. The first pillar is Kant’s view as to the origin of our 

representation of space, it is formed as a solution offered to two dichotomous options; 

reality and ideality. Kant has chosen the latter and viewed space as ideal.  As regards 

the content of our representation of space, the second pillar is formed as a solution to 

the dichotomy between intuitions and concepts. Kant located space and thereby the 

objects of geometry in intuition. So his answer to this dichotomy was that space is not 

a concept but an intuition. Finally, as regards the modality of our representation of 
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space, the third pillar is predicated upon the dichotomy between a-priori and a-

posteriori. Kant held that space is an a-priori and an intuitive framework.  

Without the collaborative work of our faculty of sensibility and understanding, 

no geometrical knowledge can arise. The construction of the concepts in pure intuition 

demands the subsumption what is manifold in our intuition under concepts. Along with 

the role played by our pure forms of sensibility, what must not be overlooked is the 

peculiar role played by schematism of pure concepts of understanding, for the 

construction of the geometrical concepts in pure intuition is the paradigmatic exemplar 

of how schematism works in producing a-priori knowledge of geometry. 

In the following chapters, it will be seen that how the opponents of Kant’s 

theory of geometry tackled these dichotomies, in the light of the discovery of non-

Euclidean geometries, in their rejection of Kant’s theory of geometry. The discovery 

of non-Euclidean geometries, and along with it its wide ranging applications in 

astronomy and cosmology posed serious threat to Kant’s theory of geometry. The 

monumental edifice, upon which is constructed upon these three pillars seemed to be 

on the verge of collapse. In the face of the advent of non-Euclidean geometries, Kant’s 

theory of geometry required certain modifications and reconsiderations in order that it 

be reconciled with these new geometries.  

Prior to the explication of the views of the opponents of Kant’s theory of 

geometry, a concise history of non-Euclidean geometries is going to be presented in 

the next chapter. 
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CHAPTER 4 

 

 

THE DISCOVERY OF NON-EUCLIDEAN GEOMETRIES 

 
 

For a considerably long period of time, the mathematicians from the late 

antiquity to Renaissance tackled the parallel postulate of the Euclidean geometry. The 

parallel postulate had always been suspected to be a redundant proposition for 

mathematicians for many reasons. Mathematicians either had been dissatisfied with it 

as not being self-evident as the other four postulates, or as being capable of deduced 

from the rest. In the middle of the 18th century, the logical independence of the parallel 

postulate was discovered by Girolamo Saccheri and it prepared the ground for a fruitful 

research for alternative geometries carried out by subsequent geometers mentioned 

above. 

Saccheri’s approach to the enigma of the fifth postulate was different than his 

predecessors. All of the mathematicians13 and philosophers who tried to derive the 

fifth postulate before Saccheri either tried to deduce it by assuming other premises the 

truth of which must be taken as self-evident, or tried to deduce from the rest of the 

postulates and failed in their attempts. Saccheri tried to show that assumption of the 

negation of the fifth postulate must be incompatible with the rest of the theorems in 

 
13 I need not go to the details of every attempt made prior to Saccheri, for it is out of the scope of the interest of 
this thesis. A keen reader can find all the data in Harold E. Wolfe’s wonderful book, Introduction to Non-Euclidean 
Geometry (1945). 
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Euclid’s Elements. In other words, the negation of the fifth postulate is a threat to the 

consistency of the entire system.  

The implementation of reductio ad-absurdum14 was indeed a novel attempt 

which hitherto had not been tried. In The Euclid Vindicated from Every Blemish 

(2014), Book I, Saccheri listed, in total, 33 propositions. The first three propositions 

make use of quadrilaterals which, today, go by the name of Saccheri quadrilaterals. 

Each proof, then, begins by a construction of a specific quadrilateral. Saccheri’s 

quadrilaterals are different from one another in terms of their summit angles. It can be 

seen from the first propositions that the summit angle of the constructed quadrilateral 

are either equal to, greater than, or less than a right angle. So there are, in total, three 

quadrilaterals to be considered for each proposition. 

 

 
14 In logic, it simply means deriving, from a given proposition to an absurd conclusion by assuming a 
false premise in the start. It is also a strategy to derive the truth of a given proposition indirectly by 
demonstrating that an absurd and impossible conclusion follows upon the assumption of the negation 
of the given proposition. 
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                 Figure 2 

 In first proposition, he established that the summit angles must be congruent to 

one another. In the second proposition, he proved that if the quadrilateral is bisected 

in the points M and H, then the angles at the joint MH will always be right angles. In 

the third proposition, he showed that the upper base of the quadrilateral on the joints 

of which the summit angles are contained must be equal to, greater or less than the 

base of the quadrilateral according as the summit angles are right, obtuse or acute 

respectively. In some of the remaining postulates, it can be seen that even though he 

managed to derive contradictory consequences on the assumption of HOA, he could 

never find any under the assumption of HAA. He was able to derive bizarre conclusions 

that followed from HAA which were later to be deemed as theorems of hyperbolic 

geometry. 

 It is very probable that Saccheri dismissed his findings due to their intuitive 

implausibility. Saccheri added that “the hypothesis of the acute angle is absolutely 
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false, because it is repugnant to the nature of the straight line.” (Bonola, 1912, p. 43), 

which is nothing but an extra-logical reaffirmation of the truth of the fifth postulate. 

The parallel postulate, after all, is a statement about the behavior of straight lines; so 

rejecting HAA on the basis of his pre-conceptions about what straight line actually is 

gives away his intuitive stance towards parallel postulate from the beginning. Had he 

realized that he was on the verge of finding a new geometry, the discovery of the non-

Euclidean geometries could have been made a century earlier. 

 After Saccheri, the next person who deserves to be credited in the course of the 

attempts made to vindicate Euclid, is without doubt Lambert. Lambert’s approach was 

very similar to that of Saccheri. He made use of quadrilaterals and approach the 

problem through assuming the impossible, that is, the negation of the fifth postulate. 

The difference between the quadrilateral used by Saccheri and that used by Lambert 

is that the former included two summit angles whereas the latter had only one summit 

angle. The consequences that he was able to derive was much richer and exotic. 

Lambert was able to show that there is a relation between the area of a triangle and the 

sum of its angles. In HOA, the area of a triangle is directly proportional to the sum of 

its interior angles plus two right angles. In HAA, the area of a triangle is directly 

proportional to the sum of its interior angles minus two right angles15. (Wolfe, 1945, 

p.33). He also noticed that the geometry based on HOA resembled spherical 

geometry16. The geometry, on the other hand, based on HAA, could be modelled on a 

 
15 Mathematically, they can be expressed as follow: in the case of HOA, the formula for the area of a 
triangle becomes A△ = r2 (π + α + β + γ). In the case of HAA: A△ = π - (α + β + γ). 

16 Spherical geometry is a branch of geometry which is made on the surface of a sphere. On the surface 
of a sphere, an area of triangle is directly proportional to the magnitude of the sides of the triangle, as 
the sides get bigger so does the area. This is what Lambert observed when dealing with HOA. It is 
through the realization of the similarity between the geometry based on HOA and spherical geometry, 
he was able to conclude that the same property holds for the triangles in the geometry based on HOA. 
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sphere with an imaginary radius17 (Wolfe, 1945, p.34). The last remark he made about 

the geometry based on HAA is that the figures, such as triangles and quadrilaterals, 

generated in it have an absolute unit of length18 (Wolfe, 1945, p.34). 

 Both Saccheri and Lambert were on the same boat; they already had been pre-

occupied with certain kind of tacit assumptions as to the nature of the fifth postulate 

prior to their investigations and their attempts to show its truth by virtue of reductio 

arguments. Therefore, neither of them were able to realize that they are on the verge 

of discovering a new territory in geometrical landscape.  

 The situation took a completely different course with Bolyai, Lobachevsky, 

Schweikart and Gauss. They were indebted to the works of Saccheri and Lambert in 

that both Gauss, Bolyai and Lobachevsky began their investigations with the 

utilization of the reductio method first tried by Saccheri and Lambert. Unlike, 

however, Saccheri and Lambert, their mind were more open to embrace the new 

evolution of geometry. It seems as though these mathematicians were no more under 

the spell of the dogma of the centuries, and had their gaze fixed on a new landscape. 

There were many reasons which delayed the admission of a new geometry. One of the 

important reasons which delayed it was of course the orthodoxy of Kant’s theory of 

space among philosophers and scientists. Nobody was ready to give credence to a 

 
17 Imaginary sphere is a sphere with a radius of an imaginary quantity, which is usually denoted in 
mathematics by the symbol ‘i’. In connection with the formula for the area of a triangle in the 
geometry based on HOA and HAA, one can obtain the formula for the area of an acute triangle by 
simply substituting ‘r’ in the formula r2 (π + α + β + γ) with ‘i’ the square of which is equal to -1. One 
obtains, thus, by making the appropriate substitution, the formula for the area of an acute triangle, π 
- (α + β + γ). 

18 This means that as one is provided an information as to the angles of a given triangle or a 
quadrilateral, one is likely to find its absolute length. This has certain consequences; unlike in Euclidean 
geometry, the objects do not have scalable properties, and the congruence relations do not hold for 
the same kind of object across different scales in the geometry based on HAA. In Euclid’s Elements the 
constructed figures are always in a constant relationship independent of their scale. This is no longer 
true in the latter geometry.  
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system of geometry which was completely at odds with the picture of space drawn by 

Kant. Another reason was that the rate of transfer of ideas took place relatively slowly 

compared to the rate at which they are transferred today. It took years for the discovery 

made in the one portion of the earth to reach other portion of it. And thirdly, the pre-

eminence of Euclidean geometry and its successful inheritance over almost two 

thousand years. Notwithstanding all these factors, things began to change with Bolyai, 

Lobatchevsky and Gauss.  

 Gauss published, compared to the publications made about the possibility of 

new geometry, almost no substantial work. But his lifelong interest as to the subject 

matter can be traced from the letters he exchanged with Farkas Bolyai, F. A. Taurinus, 

and many others. It was Gauss who first recognized, along with Lobatchevsky, 

Schweikart and Janos Bolyai, the geometry based on HAA as a new geometry, and was 

the first person to call it Non-Euclidean geometry (Wolfe, 1945, p.46). In a letter to 

written at Göttingen on November 8, 1824 to Taurinus, he stated that “the assumption 

that the sum of three angles is less than 180° leads to a curious geometry, quite 

different but thoroughly consistent.” (Wolfe, 1945, p. 46) And he also mentions about 

a constant he discovered which, when taken infinitely large, makes the new geometry 

approximates to Euclidean in the same letter to Taurinus. He also states that all his 

attempts were in vain to discover a contradiction in this new system. His meditations 

on these issues led him to the idea that space is something utterly mysterious to us and 

led him to adopt an empiricist theory of space. To quote from the same letter:  

But it seems to me that we know, despite the say-nothing word-wisdom of the 

metaphysicians, too little, or too nearly nothing at all, about the true nature of 

space, to consider as absolutely impossible that which appears to us unnatural. 

But if this Non-Euclidean geometry were true, and it were possible to compare 

that constant with such magnitudes as we encounter in our measurements on 

the earth and in the heavens, it could then be determined a posteriori. 

Consequently in jest I have sometimes expressed the wish that Euclidean 
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geometry were not true, since then we would have a priori an absolute standard 

of measure. (Wolfe, 1945, p. 47) 

 

The idea that Euclidean geometry may not be the true geometry of space, and in fact, 

may be a chapter of another geometry which encompass it, was not novel to Gauss. 

Karl Ferdinand Schweikart, in 1818, already developed a system in which there were 

two kinds of geometry; Euclidean and Astral (Halsted, 1900, p. 251). The sum of the 

interior angles in the former adds up to two right angles whereas in the latter to less 

than two right angles. He, like Gauss, talks about the same constant19 that belong to 

astral geometry which, when taken large enough, yields Euclidean geometry. This, in 

fact, makes the first explicit description of a non-Euclidean geometry, which is made 

prior to the discovery of it by Janos Bolyai in the year 1923, and Nikolai Lobachevsky 

in 1926. 

 The first publication made that established non-Euclidean geometry as a 

consistent system of geometry was made by Janos Bolyai in the year 1923. Janos 

Bolyai was the son of Farkas Bolyai, who also had long been occupied with the 

problem of parallels. Janos Bolyai also started, like Saccheri and Lambert, his attempts 

to prove the fifth postulate by negating it. But prior to that, he changed the fifth 

postulate as had been formulated by Euclid with Playfair’s20. The denial of the 

postulate, thus, implies that either no parallel lines could be drawn through a given 

point to a line or many parallels could be drawn (Wolfe, 1945, p. 50). Bolyai eliminated 

 
19 The letter in which Gauss talked about such a constant is that which was exchanged with Franz 
Taurinus, who was the nephew of K. F. Schweikart and whose attention was first directed to these 
matters by his uncle Schweikart. So, Gauss may have first acquainted with the idea of such a constant 
through Schweikart.  

20 Playfair’s axiom is an axiom which was preferred to the fifth postulate in Euclid’s Elements. The 
axiom is stated by Playfair as follows: “In a plane, given a line and a point not on it, at most one parallel 
to the given line can be drawn through the point” (Playfair, 1846, p. 29). The term “at most” is added 
to the original postulate to show that the parallel line drawn is unique. 
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the former hypothesis by arguing that it contradicted with the 27th and 28th 

propositions21 in Euclid’s Elements (Wolfe, 1945, p. 50). The consequences drawn 

from the second hypothesis, however, never ceased to amaze Bolyai for a very long 

time. He concluded that if there can be drawn two lines that are not parallel through a 

given point to a given line, then there must be infinitely many lines parallel to a given 

line (Wolfe, 1945, p. 50). As he worked upon the second hypothesis, he realized that 

a consistent geometry has risen from the assumption of its existence; he could not find 

any contradiction in this new system he is dealing with. He published all of his ideas 

and formulations in the book named Appendix in the year 1832. 

 Independently of the discoveries of Janos Bolyai, Nikolai Lobachevsky already 

reached similar conclusions in the year 1826 in Kazan. The results he obtained was 

similar to that of Bolyai; he discovered that a geometry exists in which there can be 

drawn, to a given line and through a point, more than a single line. The interior angles 

of the triangles constructed within that geometry is also less than 180° (Wolfe, 1945, 

p. 52).  

 The methodology used by Bolyai and Lobachevsky was the same as that used 

by Euclid; they were using what is called synthetic method in which they proceeded 

from certain axioms, postulates and definitions towards theorems. It is a progressive 

method developed by Euclid. With Riemann, an analytical method is developed in the 

treatment of space. The synthetic treatment of space required that the geometrical 

character of space could either be described by the propositions of Euclidean 

 
21 In the proposition 27, it is proven that if two straight lines intersected by a third line making the 
alternate interior angles congruent to each other, then the two straight lines must be parallel. It is 
provided by the second postulate that two straight lines can be extended indefinitely, therefore the 
proposition 27 clearly shows the existence of parallels which contradicts with the first assumption that 
there exist no parallels to a given line. 
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geometry, or by the propositions of the new geometry developed independently by 

Bolyai, Lobachevsky, Schweikart and Gauss. More and more, especially with 

Schweikart, Taurinus and Gauss, it is believed that the geometry that is fit to describe 

the astronomical scales is astral geometry, and Euclidean geometry is nothing but a 

special case of this geometry. The assumption is grounded upon the discovery of the 

constant described by Schweikart which, when taken to infinity, yielded Euclidean 

space. Thus astral geometry seemed to have included Euclidean space in itself. But 

with Riemann, space is completely rid of a particular geometrical character. In his On 

the Hypotheses which lie at the Foundations of Geometry, he stated the following:  

 

It is known that geometry assumes, as things given, both the notion of space 

and the first principles of constructions in space. She gives definitions of them 

which are merely nominal, while the true determinations appear in the form of 

axioms. The relation of these assumptions remains consequently in darkness; 

we neither perceive whether and how far their connection is necessary, nor a 

priori, whether it is possible… The reason of this is doubtless that the general 

notion of multiply extended magnitudes (in which space-magnitudes are 

included) remained entirely unworked. I have in the first place, therefore, set 

myself the task of constructing the notion of a multiply extended magnitude 

out of general notions of magnitude. (Riemann, 1873, p.1) 

 

 

Riemann endeavors to construct the space from the general notions of magnitude and 

he adds to that that the possibility of obtaining measure-relations for a continuous 

manifoldness22 rests upon measurement shortly after this passage. Given that space is 

a continuous triply-extended magnitude23, what follows strictly from this is the 

following: the general character of space cannot be obtained through axioms, it must 

 
22 A collection of points or elements (objects, entities) that has the structure of a multiply extended 
magnitude 

23 A concept with an associated fixed number of magnitude concepts, each of which must be specified 
according to its mode in order to individuate and identify an instance of that concept; ordinary physical 
space, e.g., is a triply extended magnitude, because it needs three spatial lengths (coordinates, say, in 
a fixed coordinate system) 
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be obtained through measurement. As was brilliantly said by Reichenbach; 

“Riemann's extension of the concept of space did not start from the axiom of the 

parallels, but centered on the concept of metric.” (Reichenbach, 1958, p. 7). 

Riemann’s theory is grounded upon the Gauss’ studies on curved surfaces and 

can be characterized as a brilliant extension of it. According to Gauss’ Theorame 

Egregium, the curvature of any surface, which amounts to the deviation of a curve 

from a plane, can be completely determined within the two-dimensional surface alone 

without embedding the surface in a higher dimensional space. What Gauss had in mind 

was a geometry akin to practical geometry in which one could find how much the 

surface upon which one stands is deviated from being planar by making measurements 

with rigid rods. This is called as the intrinsic curvature. If one finds that the ratio of 

the circumference of the circle he measured with ones measuring rods to its diameter 

is greater than π, then one could conclude that one is standing on the surface of a 

sphere, if it is less than π, on the surface with a saddle-shape, if it is exactly π, on a 

planar surface. So each surface is characterized according to the measurements 

obtained with these rigid rods. Riemann can said to have advanced Gauss’ theory in 

that he began with manifolds, for there existed possibility, for Riemann, that any two 

surfaces had different curvature. This is why he abolished the view that the geometric 

character of the all-inclusive space is given prior to the determination of the measure-

relations between manifolds which constitute it. Reichenbach commented on the 

procedure adopted by Riemann as follows:  

Riemann showed that it is not necessary to develop an axiomatic system in 

order to find the different types of space; it is more convenient to use an 

analytic procedure analogous to the method developed by Gauss for the theory 

of surfaces. (Reichenbach, 1958, p. 9) 
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Riemann looked like an adherent of empiricism about space, perhaps similar to 

Schweikart, Taurinus and Gauss. What differentiated the views of Riemann from the 

others are his statement that there are different measure relations which can hold for 

space. Euclidean geometry establishes one system of measure-relations; so it is only a 

hypothesis used by mathematicians. So far, mathematicians preferred to use Euclidean 

straight lines and segment for measurement, but Riemann thinks that the measurement 

could take place with totally different lines and segments. This means that there is no 

true and unique metric which we can employ to characterize the geometry of space; 

space is metrically amorphous. With regard to this, Riemann wrote: 

 

 

It will follow from this that a multiply-extended magnitude is capable of 

different measure relations, and consequently, that space is a particular case of 

a triply-extended magnitude. But hence flows a necessary consequence that the 

propositions of geometry cannot be derived from general notions of magnitude, 

but that the properties which distinguish space from other triply-extended 

magnitudes are only to be deduced from experience. Thus arises the problem, 

to discover the simplest matters of fact from which the measure relations of 

space may be determined; a problem from the nature of the case is not 

completely determinate, since there may be several systems of matters of fact 

which suffice to determine the measure relations of space… (Riemann, 1873, 

p.1) 

 

There are many measure-relations which can be used for the determination of the 

metric of the space, and Riemann thought that it is only through experimentation that 

one can determine those measure relations. Mathematicians must always expand their 

system and try different measure-relations.  The determination would never be exact, 

for we are in the domain of empirical science. It is only through the extension of the 

variety of measure-relations we can get to know, of course again within the range of 

probability, the true metric of space. We must extend the systems of different measure 

relations to infinitely small and infinitely big and, in the light of experimentation and 
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test their validity (Riemann, 1873). But possibly contrary to his thesis as to the 

amorphousness of space in terms of its metric, Riemann held that the infinitesimal 

distance between two points are given; so, in a sense, as, his views can be taken as a 

confirmation that at the infinitesimal level, space is Euclidean. 

 

 Another remarkable achievement of Riemann is that he discovered another 

kind of non-Euclidean geometry with a constant curvature. This new geometry is 

obtained by the negation of the second postulate in addition to the negation of the 

parallel postulate. The new geometry thus formed is finite but unbounded, for one can 

walk indefinitely in the same direction without being brought to a halt. In it, every 

straight line converge at two antipodal points. Therefore, there exists no parallels in 

Riemann’s geometry, whereas in Lobachevski’s and Bolyai’s geometries, there exists 

infinitely many parallels. It can be said that Riemann’s geometry is a “spherical 

geometry extended to three-dimensions” (Poincaré, 1905, p. 38). So it naturally 

follows that the surface of a sphere provides a model to Riemannian geometry in two-

dimensions. Riemann’s geometry serves as the axiomatic foundation for the spherical 

geometry of two and higher dimensions. 

 These new geometries throw a serious challenge to Kant’s theory of space and 

geometry. If the axioms of the Euclidean geometry were synthetic a-priori, how is it 

that alternative geometries can in fact be conceived? The advancements initiated by 

Saccheri and ended up in Riemann called into the question the soundness of Euclidean 

geometry; more and more, the mathematicians adopted an empiricist approach, and 

thought that space could in fact be non-Euclidean. In the next chapter, it is going to be 

discussed how all of these advancements in the field of geometry impacted Kant’s 

theory of space and geometry. 
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CHAPTER 5 

 

 

THE IMPACT OF NON-EUCLIDEAN GEOMETRIES TO KANT’S 

PHILOSOPHY OF MATHEMATICS 

 

5.1. The Possibility of Non-Euclidean Geometries in Kant’s Philosophy 

 

The attractiveness of the thesis that space is transcendentally ideal and is 

dependent upon the subjective constitution of our mind was lost after the advent of 

non-Euclidean geometries. The discovery of non-Euclidean geometries almost 

rendered Kant’s theory of space and geometry obsolete. The consistency and the 

fruitfulness of these alternative geometries provided philosophers and scientists a 

ground for their presumption that non-Euclidean spaces can be ‘conceived’, or 

‘thinkable’.  These new geometries are indeed thoroughly thinkable, and free from 

contradiction. But does this make these new geometries conceivable in the sense that 

Kant uses the term ‘conceivability’? How should a Kantian react to the thesis that non-

Euclidean geometries are as equally conceivable as Euclidean geometries? 

Apparently, Kant himself did not deny that we can reason about everything as long as 

our reasoning is not brought to a halt by contradictions. He claimed “I can think 

whatever I please, provided only that I do not contradict myself.” (Kant, 2007, 

Bxxvii/Bxxviii) From the mere logical possibility, Kant claimed, the objective validity 

cannot be ascribed to the concept. To ascribe an objective validity to the concept, 

something more is needed; something in the experience must correspond to the 
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concept. If there exists no object which correspond to the concept, than the concept is 

empty; it only stands for a possible experience, which is yet to be actualized. The 

following passage can be given as a contra-thesis to the proponents of the view that 

non-Euclidean geometries are as equally conceivable as Euclidean geometries:  

It is, indeed, a necessary logical condition that a concept of the possible must 

not contain any contradiction; but this is not by any means sufficient to 

determine the objective reality of the concept, that is, the possibility of such an 

object as is thought through the concept. Thus there is no contradiction in the 

concept of a figure which is enclosed within two straight lines, since the 

concepts of two straight lines and of their coming together contain no negation 

of a figure. The impossibility arises not from the concept in itself, but in 

connection with its construction in space, that is, from the conditions of space 

and of its determination. And since these contain a priori in themselves the 

form of experience in general, they have objective reality; that is, they apply to 

possible things. (Kant, 2007, B268) 

 

From what Kant said here, it can be inferred that there is a difference between logical 

possibility and intuitive plausibility. Every intuitively plausible concept must also be 

logically possible, but not vice versa. As long as the given concept cannot be 

constructed in pure intuition, the concept remains empty. It must be recalled from what 

is laid out in the second chapter that objective reality cannot be secured only through 

constructing the given concept in pure intuition. At the end of the construction 

procedure, a particular object must be realized in the experience in conformity with 

the constructive action of the geometer in order for that concept to gain an objective 

reality. After all, the construction, as a schema of a given concept, is a function which 

acts a norm that provides a recipe for subsuming particular objects under their 

respective geometric concepts; it is in virtue of the normative function that the image 

is connected to the geometric concept. At the basis of Kant’s thesis, there lies the 

argument that within our experience, neither we can confront non-Euclidean relations 

within our experience; nor we can construct any geometrical object that deviates from 

the Euclidean characteristics in our imagination. 



 62 

 

5.2. Helmholtz, Poincaré and Conventionalism in Geometry 

 

The possibility of the intuitive plausibility of non-Euclidean geometries were first 

realized and extensively treated by Helmholtz and Poincaré. The views of these two 

thinkers were not identical, but what was common in both of them was their effort to 

provide a psycho-physiological genesis for the foundations of geometry. In a sense, 

this means a return to the empiricist programme. But even though Helmholtz can said 

to be committed to the empiricist programme about the genesis of geometry24 by 

stressing the importance of the environment in which the species is embedded and its 

impact on the species in its acquisition of a particular geometry, Poincaré, by partially 

building up on the accounts of Helmholtz, offered a completely novel epistemological 

category to account for the foundations of geometry. The new epistemological 

category introduced by Poincaré is entitled as conventionalism.  

Conventionalism aimed to incorporate the empirical and rational elements to 

account for the genesis of geometry; but not in the sense that Kant incorporated them. 

For Poincaré, the propositions of geometry were not synthetic a-priori truths, for if it 

were the case, then “they would be imposed upon us with such a force that we could 

not conceive of the contrary proposition.” (Poincaré, 1905) Here again, the reader is 

confronted with the term conceivability of the propositions of non-Euclidean 

geometry. For Poincaré, the comprehension of the propositions of non-Euclidean 

 
24 Helmholtz shared his views about the foundations of geometry in his short article On the Origin and 
Significance of Geometrical Axioms (1870). The article was included in the book Epistemological 
Writings (1921) which was edited and published by positivist philosophers; Moritz Schlick and Paul 
Hertz. More about the relevant content about these publications will be discussed in the subsequent 
chapters. 
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geometry is not only expressed as our ability to reason about them without running 

ourselves into any contradiction. He offered many thought experiments in which he 

depicted fictive worlds to show that different environmental conditions would compel 

us to reinterpret the primitive geometrical terms. This in turn makes possible the 

comprehension of different geometries for sentient beings who are equipped more or 

less with same kind of sense organs as ours. This, in effect, reflects the impact of 

Helmholtz’s psycho-physiological arguments on Poincaré’s philosophy of geometry. 

Helmholtz, before Poincaré, gave similar arguments, in his On the Origin and 

Significance of Geometrical Axioms (1870), in which he argued that the different 

environmental conditions would inevitably cause species like us to adopt a different 

geometry. Neither it was the case that the propositions of geometry were experimental 

facts, for “we do not make experiment on ideal lines or circles, we can only make them 

on material objects”, (Poincaré, 2011) they were conventions; and our choice of one 

particular geometrical over another is carried out in the guidance of the nature. Nature 

does not dictate which particular geometry is to be chosen to account for the 

phenomena, nature can only be suggestive of which particular geometry is to be 

chosen.  

Poincaré offered an exhaustive list of empirical and a-priori conditions to 

account for the constitutive factors in the genesis of space and geometry. The empirical 

conditions for a species to come up with the idea of space and geometry can be divided 

into two categories; subjective and objective conditions25. The subjective conditions 

are to have a body and mobility, and the objective condition is the possibility of the 

 
25 This division I announced here does not mean that subjective conditions are not objective; it only means that 

they are the conditions which is related to the experiencing subject, that is to say, the conditions must be satisfied 
by the subject. 
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motion of the invariable figure. Poincaré, first, begins by analyzing our sensations and 

how they contribute to the idea of space. He affirms, just like Kant did in his 

Transcendental Aesthetic, that “our sensations cannot give us the notion of space”, and 

by themselves “they have no spatial character” (Poincaré, 1898). But, unlike him, 

Poincaré thought that in order for an organism to have an idea of space and in turn be 

capable of doing geometry, the organism, first of all, must be capable of moving. He 

clearly acknowledges it when he says “For a being completely immovable, there would 

be neither space nor geometry.” (Poincaré, 1905, p. 48)  

The origins of the idea of space depends upon the reciprocal relations formed 

between the subject and the object. There are some external changes, in which it is 

possible for the subject to restore the aggregate of primitive sensations through 

performing certain locomotor actions, and the idea of space is predicated upon our 

ability to compensate for the external changes through respective internal changes. It 

is through these compensatory acts and performed displacements that an organism gets 

to know the spatial relations and thus forms the idea of space. An organism incapable 

of performing certain displacements would not even know the very primitive spatial 

relations such as contiguity or distance. This is at odds with the Kantian thesis which 

claims that “space must already be presupposed in order for the appearances are 

represented as alongside one another” and ordered accordingly (Kant, 2007, B38/B39). 

This, however, would be totally meaningless to that organism according to Poincare. 

Poincaré, in his Foundations of Geometry (1898), wants to imagine us a hypothetical 

person “who possessed but a single immovable eye” (Poincaré, 1898). This man is 

completely paralyzed, and one of his eyes is blind. The other is not blind, but he is not 

able to move it at his will. For Poincaré, this man would not be able formulate these 

mentioned relations and he emphasizes that the origin of the idea of space as a 
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framework of relations could be traced back to our capability of moving, and our 

capability of retaining the aggregate of primitive relations through performing certain 

displacements. Within this context, focusing on an object with our eyes and capable 

of following it continuously is an example of a displacement that we make with our 

eyes. Since our hypothetical man is incapable of performing these movements, the 

changes he spots upon his retina cannot be categorized spatially; because there remains 

no possibility for our man to retain his old impressions back.  

The idea of the motion of an invariable figure plays an equally important role 

in the genesis of the Euclidean geometry and in the birth of the idea of space. Every 

change we observe in the nature is either a change of position or a change of state. The 

former category is comprised of changes that the solid bodies generally undergo. In 

order for compensation to be possible, Poincaré says “the external object in the first 

change must be displaced as an invariable solid would be displaced.” (Poincaré, 1905, 

p. 60). He emphasized the importance of the possibility of free-mobility of objects, 

and said “if, then, there were no solid bodies in nature, there would be no geometry.” 

(Poincaré, 1905, p. 61). Changes of state, on the other hand, can be exemplified by the 

chemical reactions of various sorts, or the displacements of fluids, which cannot be 

compensated for by making internal displacements. Since the motion of an invariable 

figure was not explicitly stated as an axiom by Euclid, Poincaré considered it to be an 

implicit axiom which was used by Euclid to provide a ground for the possibility of 

establishing congruence relations. In Euclid’s system almost every proof is predicated 

upon the notion of congruence. Helmholtz himself said that “the foundation of all 

proofs in the Euclidean method is the proof of the congruence of the relevant lines, 

angles, plane figures, bodies, etc.” (Helmholtz, 1977, p. 3) But this axiom, for 

Poincaré, is evidently disguised in the fourth axiom of The Elements, which is not 
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explicitly stated by Euclid, but utilized nonetheless. The fourth axiom seeks to show 

that two figures are congruent if one can be superimposed on top of the other. But 

moving a figure in space in such a way requires that the figures conserve their shape 

while moving. This, for Poincaré, blends Euclidean geometry with an empirical 

element; motion. The alleged purity of the geometrical practice is thus stained by the 

introduction of a physical element. In contrast to Kant, Poincaré did not differentiate 

between pure and empirical motion as Kant did. For Poincaré, motion cannot be 

determined a-priorily, for we do not know a-priori that the motion of objects that we 

observe within our environment obey the group of Euclidean displacements; they 

could just as well obey to another group of non-Euclidean displacements.  

Here, the summit of the thesis of Poincaré is reached, the ultimate empirical 

condition necessary for the genesis of geometry is nothing other than the reciprocal 

relation formed between the subject and the object. Subject contributes to it through 

performing certain internal displacements which are aimed to compensate for the 

change caused by the external displacements of an object. Together, they form a 

displacement group. This is why Poincaré held that alternative geometries are as 

equally conceivable as Euclidean geometries, for in a possible world, the solid bodies 

may obey to different laws of displacements than the ones to which have been long 

accustomed to observe. Perhaps the most famous thought experiment provided by 

Poincaré is his Sphere-world which he gave in his Science and Hypothesis (1903). This 

sphere world is in an imaginary world governed by different laws. The properties of 

the sphere-world are listed down by Poincaré as follows:  

 

1. The world is enclosed within a sphere 
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2. Temperature is not uniform; it gradually decreases as we move away from the 

center of the sphere. The absolute temperature is proportional to R2 – r2 

 R = Radius of the sphere 

  r = Distance of the point considered from the origin 

3. Each body has the same coefficient of dilatation, so that each body shrinks or 

expands in the same proportion as they move 

4. The law of refraction is inversely proportional to R2 – r2 

5. This means that the path of the ray of lights are not linear, they are circular. 

 

The sentient beings, Poincaré argues, would cultivate a geometry different from 

ours; their geometry would be a non-Euclidean geometry. Imagine that two people; P1 

and P2, are transferred into sphere-world from our world; P1 and P2, for so long, have 

been habituated to use Euclidean geometry, so the geometry that they have so long 

accustomed to is Euclidean geometry. The question is the following: would they notice 

the difference between those two worlds? If so, how? First of all, as Poincaré stated, 

the world would appear as infinite for those beings, whereas from our perspective, it 

appears as finite. The reason is that bodies shrink as they move away from the origin, 

and this makes the periphery not approachable for those beings, which would make 

them think that their world is infinite. P1 and P2 would not so easily be able to detect 

the effect of shrinking and expanding through measurement. Because every time they 

wanted to measure an object which moves far away from the origin, they would have 

to move away from the origin to reach that object and superimpose their measuring 

rod on top of that object, so their measuring rods, together with their bodies, would 

shrink in the same proportion as the body that they wanted to measure.  
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But is not there, then, a way to find out that the world in which P1 and P2 are 

embedded is different than their previous world? They would have to consider their 

tactile and visual impressions in the sphere-world and compare them with that in our 

Euclidean world. The realization of the differences between their tactile impressions 

in the sphere-world and those in the Euclidean world demands that they make certain 

experiments with their bodies or rigid rods. Suppose that P1 and P2 are located at the 

origin of the sphere. Let P1 make a 90o counter-clockwise rotation to the left and let P2 

make a 90o rotation to the right. After each completes his rotation, let them walk ten 

steps in a straight line and stop and rotate their bodies back to their initial orientation. 

This indicates that they walked away from one another for about twenty steps, stopped, 

and reconfigured their bodies back to their initial orientation. Lastly, let each of them 

walk ten steps in a straight line again for the last time. This imply that they walk in 

parallel lines; for both are separated from one another for about twenty steps, and 

walking towards the same direction. Now if they want to measure the distance in 

between them, they have to walk towards one another and count their steps. They will 

notice that the number of steps that needs to be taken is far greater now, for they both 

moved away from the origin about ten steps and their bodies shrank as they moved, so 

their steps will be much smaller when they are away from the origin, and in turn the 

distance they measure when they move towards one another will be much greater. If 

those two people were transported to that world from a Euclidean world, they would 

be astonished, for they knew that in the Euclidean world, the parallel lines are 

equidistant to one another everywhere. But here, even though they moved parallel to 

one another, they see that the distance between them gets larger and larger as they 

move away from the origin. So, just like in hyperbolic geometry, the distance between 
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two parallel lines in this world does indeed change; the more they move away from 

the origin, the more space there becomes in between them. 

 There are other ways to find out the differences between the sphere world and 

our Euclidean world. Through the measurement of the ratio of the circumference of a 

circle to its diameter with physical rods, those people would likely to discover that it 

is bigger than π; and as the diameter increases the ratio exceeds π more and more. The 

reason behind this is simple; as the physical rods move away from the origin, they 

shrink, so measuring the circumference with smaller rods means that more rods can 

placed on it compared to the number of the rods that could be placed on it if the 

diameter were smaller. This would in turn mean that the measurement of the 

circumference would yield exceedingly large values compared to the value of the 

diameter, and when the ratio is thus taken, this would imply an excess compared to the 

ordinary ratio between circumference and diameter. 

 

     Figure 3 
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What about the visual impressions of those people in the sphere-world? How would 

the visual impressions of P1 and P2 be different from those they used to experience in 

their previous Euclidean world? Is the sphere-world been qualitatively identical with 

the Euclidean space? So far, considering only the tactile impressions of P1 and P2, the 

space in which they live display the characteristics of the hyperbolic space; in 

hyperbolic space the ratio of the circumference to its diameter is bigger than π and the 

parallel lines are not equidistant. So the question can be translated to the following: 

how different the visual impressions of beings like us in a hyperbolic space? 

Helmholtz, in his The Origin of the Geometrical Axioms, offered a detailed explanation 

about it. He said that the most distant objects of this space would be seen at a finite 

distance to the observer, but the distance between those objects and the observer 

appears to be dilated as the observer moves towards these objects. This means that two 

physical lines that are remotely placed relative to the standpoint of the observer 

appears to be parallel at first sight. But as the observer moves towards these physical 

lines, he would see that those lines bulge outwards, and the distance between them is 

increased. (Helmholtz, 1977). Considering what Helmholtz said about the visual 

estimations of the subject, it is evident in these passage that the visual impressions of 

P1 and P2 would also be different than that they had in their native world. Considering 

the difference both in their tactile and visual sensations in the sphere-world, can it be 

concluded that these people would necessarily adopt the hyperbolic geometry in 

explaining the succession of their impressions in that world? It is clear that the solid 

bodies that P1 and P2 encounters in the sphere world are totally different than the bodies 

that they experienced in their ordinary world. Despite the difference in their tactile and 

visual impressions, they would still regard the bodies that they encounter in the sphere-

world as solid, for they are able compensate for the external changes through 
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performing certain internal changes. But it would be a hasty conclusion to say that they 

would adopt hyperbolic geometry, because then “geometry would be only the study of 

the movements of solid bodies” (Poincaré, 1905, p. 70). Poincaré stated that 

experience could only guide us in our choice of a particular geometry, it could never 

dictate to us which geometry to choose among alternatives. This brings us to the role 

played by the a priori elements in choosing a particular geometry. Regarding this, 

Poincaré wrote: 

The object of geometry is the study of a particular "group"; but the general 

concept of group pre-exists in our minds, at least potentially. It is imposed on 

us not as a form of our sensitiveness, but as a form of our understanding; only, 

from among all possible groups, we must choose one that will be the standard, 

so to speak, to which we shall refer natural phenomena. (Poincaré, 1905, p. 70) 

 

The a-priori element is the notion of group. Poincaré aimed to provide a group-

theoretical foundations for both space and geometry. Among various groups, we are 

particularly interested in displacement groups to obtain the idea of space, and 

geometry is nothing other than a particular choice of a displacement group among the 

existing alternatives. Poincaré underscored that the notion of a group does not belong 

to our form of sensibility; it belongs to our form of understanding. This is important, 

for it separates Poincaré’s philosophical position from Kant. For Kant, space is a form 

of sensitiveness which precedes all the data provided to us by our senses. Poincaré 

thought that our capability of forming a network of relations is not due to our form of 

sensitiveness but due to our having the idea of group in the first place. “What 

mathematicians call a group is the ensemble of a certain number of operations and of 

all the combinations which can be made of them” said Poincaré (Poincaré, 1898, p. 

13). Space and geometry owes its existence to these specific operations and the 

combinations of those operations that we are able to make. The very idea of the 

compensation of our aggregate of sensations, is grounded upon the idea of a 
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displacement group. Our ability to compensate for an external change is taken as the 

fundamental group operation. The idea of compensation is not taken from experience, 

for experience roughly informs us that the sensations that we feel at t1 are retained 

after making necessary displacements at t2.  But the very idea of making compensatory 

acts arises from within, and this alone is the condition of the possibility of classifying 

our sensations.  

The set of operations Poincaré gives as examples can in fact be explained by 

using the language of group theory. To give an example, consider an aggregate of 

sensations that I receive through my thumb, A at t1. Consider that an internal 

displacement S takes place at t2, and this makes me feel the same set of sensations with 

my index finger at t2. So at t2, my index finger is now feeling the set of sensations A. 

Now consider that at t3, an external displacement R takes place and makes my index 

finger feels an aggregate of sensations B with my index finger. Now I observe that, 

through making an inverse displacement, S’ at t4, I bring my thumb in the place of my 

index finger and my thumb feels now the aggregate of sensations B. Thus S’ becomes 

the inverse displacement of S. Inverse element is one of the axioms of group theory 

and its utilization is nowhere limited to displacements; even in manipulating algebraic 

quantities that are totally devoid of spatial significance we use the same group 

structure. This is why the idea of group belongs to the form of understanding for 

Poincaré. Heinzmann declared it to be an algebraic intuition26 which is applicable to 

our sensations and is useful in classifying them.  

Even though it was first mentioned earlier as an empirical condition of the 

possibility of both space and doing geometry, the idea of the possibility of the motion 

 
26 See, Heinzmann (1999) 
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of an invariant figure is not something that we derive from experience directly. It is 

true that experience provides us with solid bodies that are invariant under any 

displacement, but solid bodies must not be confused with rigid bodies. Rigid bodies 

are idealized solid bodies. Solid bodies must be taken as approximations of rigid 

bodies. The difference between solid bodies and rigid bodies are made clear brilliantly 

by Hans Reichenbach in his Philosophy of Space and Time27. In brief, Reichenbach 

claimed that a rigid body is a solid body whose minute deformations can be ignored. 

This definition squares with Poincaré’s intentions. Poincaré was aware of the fact that 

the mind intervenes and eliminates those minute deformations present in solid objects 

in creating ideal objects; and geometry does not study solid objects, it studies those 

ideal objects. This is where the opinions of Poincaré is departed from that of 

Helmholtz. Helmholtz thought that the idea of the motion of an invariable figure is 

obtained directly from experience. The following passage aims to exhibit the views of 

Helmholtz with respect to the origin of the possibility of the motion of an invariable 

figure: 

If, however, we want to build necessities of thought upon this assumption of 

free mobility of fixed spatial structures with unaltered form towards every part 

of space, then we must raise the question whether this assumption does not 

involve some logically undemonstrated presupposition. We shall presently see 

that it does in fact involve such a presupposition--and, indeed, one very rich in 

consequences. But if it does so, then every proof of congruence is based upon 

a fact taken only from experience. (Helmholtz, 1977, pp. 4-5) 

 

Poincaré, in contradistinction Helmholtz’s views, was aware of the fact that nature can 

only provide us with approximately rigid bodies. It is the mind which acts upon these 

approximate sensations and convert them into ideal ones. So the possibility of an 

 
27 The complete definition is given as follows: “Rigid bodies are solid bodies which are not affected by differential 
forces, or concerning which the influence of differential forces has been eliminated by corrections; universal 
forces are disregarded” (Reichenbach, 1958, p. 22) I refrained from providing the original definition in the text for 
I believed that certain terms that are used in it; such as ‘differential forces’ and ‘universal forces’, are apt to create 
more confusion than to clarify the point I tried to make. These terms will be expounded upon in the next section. 
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invariant figure is known a-priori in geometry, it is not attained from experience. This 

is one of the a-priori elements of geometry without which the practice of it becomes 

impossible.  

Poincaré’s conventionalism allowed him to ridicule the question whether the 

space is Euclidean or not. This question, for Poincaré, has no meaning, for one 

geometrical structure cannot be true or false, it can only be more convenient (Poincaré, 

1905, p. 50). Experience can neither refute, nor verify the Euclidean geometry. Even 

if, as perhaps believed by the discoverers of non-Euclidean geometry such as Taurinus, 

Gauss and others, one day it will turn out that the parallax of a distant start is different 

than it currently is, the practitioners of geometry and science will be faced with two 

options; either they will give up on the Euclidean geometry and adopt non-Euclidean 

geometry, or they will give up on the law of optics which state that a ray of light 

propagates in a straight line and retain the Euclidean geometry. So his conventionality 

thesis is centered on the interdependence between physics and geometry. In the light 

of new experiments and observations, the current geometrical structure used in science 

may require a modification. But scientists will always be free to choose whether the 

geometrical structure is going to be modified or the laws of physics are going to be 

modified. The choice cannot be dictated to him by experience, experience can only 

guide the scientists to choose the simplest and the most convenient geometric structure 

to explain the relation between phenomena. Poincaré thought that the scientists will 

always favor the Euclidean geometry over the alternatives, for it is the simplest and 

the most convenient geometric structure to explain phenomena. 

In conclusion, Poincaré renounced Kant’s theory of space and geometry. Space 

could not be a priori form of sensitiveness, for a human being incapable of producing 

necessary movements would not be able to possess the idea of it. One of the 
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constitutive a-priori elements of space28 is the idea of group, which pre-exist in us as 

a form of understanding. Geometry, cannot be a body of knowledge comprised of 

synthetic a-priori truths; for there are alternative geometries which can also be used to 

describe the spatial behavior of objects. So there is no necessity in singling out the 

Euclidean geometry to describe the relation between phenomena.  

Even though Poincaré rejected Kant’s theory of space and geometry, he 

nonetheless tried to remain, loyal to the Kantian terminology throughout his works and 

sided with Kant on the issue of the content of mathematics. Very similar to Kant, for 

Poincaré mathematics is not devoid of an intuitive content. He, too, believed that 

mathematics harbored extra-logical elements in it, and thought that it cannot be 

reduced to logic. He associated these extra-logical elements with our intuitions just 

like Kant. However, the term ‘intuition’ received very different connotations with 

Poincaré. The geometrical intuition, in the sense it was used by Kant, is likened to a 

sort of intuition which is fallible and unable to provide any certainty. Poincaré shared 

in his book The Value of Science the following quote taken from Royce’s article, 

Kant’s Doctrine of the Basis of Mathematics: “That very use of intuition which Kant 

regarded as geometrically ideal, the modern geometer regards as scientifically 

defective, because surreptitious. No mathematical exactness without explicit proof 

from assumed principles-such is the motto of the modern geometer.” (Poincaré, 1958. 

p. 2) The Kantian style of construction of a spatial magnitude resulting from a 

successive spatio-temporal synthesis carried out in the transcendental imagination 

 
28 The notion of group is not the only mental capacity that plays a constitutive role in the genesis of 
space. Poincaré lists other powers of the mind which equally contributes to the genesis of space. The 
remaining capacities are the power of an indefinite repetition (principle of mathematical induction) 
and the idea of continuum. These are often mentioned as intuitions, the idea of group is expressed as 
the algebraic intuition, mathematical induction as arithmetic intuition, and continuum as topological 
intuition by Heinzmann in his article, Poincare on Understanding Mathematics (1999) 
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cannot rigorously account for the continuity of the produced magnitude in the sense 

that modern mathematics today demand it. Michael Friedman, in his Kant’s Theory of 

Geometry, discussed that the existence of certain points that are used in the 

diagrammatic representations of certain propositions becomes problematic if the 

Euclid-style constructive procedure is chosen to generate them. The existence of such 

points can only be established by using polyadic quantification theory, to which Kant 

simply had no access. Friedman also stresses the fact that had Kant known the polyadic 

quantification theory, he would not have tried to base the origin of space in our pure 

intuition. If it is to be remembered from the second chapter of this thesis, Kant offered 

an argument to show that our space is a non-conceptual representation, for the 

mereological structure of it does not obey that of concepts, and the representation of a 

concept which contains within it infinitely many concepts could not be achieved with 

the tools of the logic. His argument was indeed brilliant, for Friedman, in showing the 

inadequacy of the monadic logic29 in representing the infinity. Friedman wrote:  

We can now begin to see what Kant is getting at in his doctrine of construction 

in pure intuition. For Kant logic is of course syllogistic logic or (a fragment of) 

what we call monadic logic. So, for Kant, one cannot represent or capture the 

idea of infinity formally or conceptually: one cannot represent the infinity of 

points on a line by a formal theory […] If logic is monadic, one can only 

represent such infinity intuitively: by an iterative process of spatial 

construction (Friedman, 1985, p. 466) 

 

But the discovery of polyadic quantification theory30 availed logicians the opportunity 

to represent the infinite logically. What is at stake here is actually the representation 

of the infinite divisibility, for Kant seemed to have concerned himself with the 

 
29 Monadic logic is a branch of 1st-order logic that involves well-formed formulas constructed from a one-place 

predicate. Every well-formed formula involves a single argument about a single object in monadic logic. 

30 Polyadic logic, in contrast to monadic logic, involves well-formed formulas constructed from a many-place 
predicate. Every well-formed formula involves an argument about multiple objects, so the predicates in polyadic 
logic are essentially relational predicates, and the quantifiers denote the essential order relations among the 
variables that enter into the well-formed formula. 
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impossibility of the representation the constituents of a geometric line logically. He 

thought that such representation could only be achieved through an indefinite number 

of bisection, which is a synthetic activity of the geometer that takes place in our pure 

intuition. But modern quantification theory showed that the representation of infinite 

divisibility and continuity are in fact possible. Friedman said “what makes this 

representation itself possible is precisely the quantifier-dependence of modern 

polyadic logic.” (Friedman, 1985, p. 474) Geometric intuition, when it comes to the 

representation of infinite divisibility, continuum and differentiability, has the potential 

to mislead and to err for Poincaré. Poincaré thus treats the geometric intuition of Kant 

as a sensible intuition by affiliating it to the productivity of our imagination, and 

accuses it for not being able to provide the rigor the pure intuition, such as the pure 

intuition of number31, can give. Despite all that, he did not seek refuge in formalism 

either; he thought that formalizability of infinite divisibility and continuum does not 

tell anything about the true character of what continuum is and where its origin lies. 

Poincaré, in his Last Essays, stated that we have a direct intuition of continuum32. The 

idea of continuum is already pre-supposed by the logician and expressed as an axiom 

 
31 Pure intuition of number, for Poincaré, is essentially a synthetic a-priori intuition. It is the awareness 
of our ability to iterate indefinitely. We use this intuition more than often in arithmetic and geometry 
when we want to generalize over particulars and prove a certain theorem by using mathematical 
induction. This ability, for Poincaré, cannot be reduced to logic, for it represents an infinite number of 
syllogisms link together in a series. This intuition is not reducible to logic, for logic cannot provide us 
how to pass infinitely many numbers of syllogisms to reach a general conclusion without recurring to 
this power of our minds 

32 Poincaré accuses Hilbert of using this intuition and treating as if it is an axiom of logic in his axiomatic 
treatment of geometry. The axiom of order, which was used as an axiom by Hilbert in his Foundations 
of Geometry, has its root in our topological intuitions for Poincaré. He wrote the following:  

As to the axioms of order, […] they are true intuitive propositions relating to analysis situs. We see 
that the fact that the point C is between two other points on a line relates to the method of cutting up 
one-dimensional continuum with the aids of cuts formed by impassable points. (Poincaré, 1963, p. 43) 



 78 

of logic. But the truth is that the axiom is made possible only through the availability 

of that intuition. 

 

5.3. Reichenbach and the Relativity of Geometry 

 

Poincaré and Helmholtz strived vigilantly to establish the possibility of conceiving 

a different geometry in different environmental conditions. They meticulously strived 

for explaining how, on the basis of the data provided to us by our senses, we generate 

the web of relations called space whose geometrical character depends solely on the 

observed character of those relations. The role that our sensations play in the adoption 

of a particular geometry even became more noticeable and gained a pedagogical 

importance in the possible worlds that they have created. Within these possible worlds 

there were different set of spatial relations observed among bodies which are 

completely alien to us. It was first seen with Albert Einstein that that our actual world, 

turned out to be as bewildering as those possible worlds that Poincaré and Helmholtz 

generated in their thought experiments. Unfortunately, both Poincaré and Helmholtz 

could not live long enough to see Einstein’s remarkable achievements. Einstein 

successfully implemented Riemannian geometry to our actual world and overthrown 

the old Newtonian conception which was built upon the system of Euclid. According 

to Einstein’s general relativity theory (GRT), the light is bent when it travels close to 

a gravitational region, and the bending of light becomes more noticeable as the 

strength of the gravitational field is increased. This bending of light was something 

that replaced the old conception of straight line; the straight line in Einstein’s universe 

was no more defined as was defined by the Euclidean geometry, and to give the name 
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straight to the curvilinear path traced by a ray of light would mean to adopt non-

Euclidean geometry. 

Having witnessed the success of physics in describing accurately the spatial 

relations between objects by way of non-Euclidean geometry, logical positivists raised 

concerns similar to that of Poincaré and Helmholtz about the orthodox conception of 

the nature of space and geometry. The general complaint raised by the logical 

positivists, such as Schlick, Carnap and later Reichenbach, to Kant’s philosophy of 

geometry is its failure to distinguish between pure geometry and applied geometry. 

The subject of pure geometry is the study of the logical relations between un-

interpreted primitive terms. So it is a science which is concerned solely with 

derivability in accordance with the laws of formal logic. Every term that is used in 

pure geometry is devoid of any content; only the relations between these terms are 

concerned. Applied geometry, on the other hand aims to select a particular structure 

which best fits the data acquired by means of observations and experiments. To 

achieve that explanatory success, un-interpreted terms find their meaning in applied 

geometry. The terms “point”, “straight line”, etc. are no more devoid of meaning; each 

of them is successfully coordinated to a physical object. The distinction between pure 

and applied geometry can be boiled down to the distinction between mathematical 

space and physical space. Mathematical space is that in which the mathematicians 

work with possible spatial structures. They, as it were, deal with hypothetical spaces 

and hand them on to physicists whose job is to select among those hypothetical spaces 

the one which truly describes the physical space, that is to say, the space described by 

physics.   

The general concept of space seems to be bifurcated into two distinct 

conceptions of space with the logical positivists after Poincaré. The idea of a 
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mathematical space is nowhere spotted in Poincaré’s philosophy, and it cannot be, for 

Poincaré did not give any credence to the possibility of the conception of the axioms 

of geometry independent of our sensations and the relations between sensations. For 

him, there is also no such thing as physical space in his philosophy, for there is no true 

metric which can we select to depict the spatial relations. Any metric will do the job, 

for the choice is always conventional. The introduction of this new dichotomy between 

mathematical space and physical is partly due to the success of Einstein’s GRT in 

describing and predicting the phenomena and partly due to the work done by Hilbert 

in his Foundations of Geometry33. Einstein’s impact, both as a scientist and a 

philosopher, on these philosophers cannot be underestimated. After all, in the era of 

positivists, Einstein’s famous dictum; “as far as the laws of mathematics refer to 

reality, they are not certain; as far as they are certain they do not refer to reality” 

(Einstein, 1921) echoed and taken as a maxim of an utmost value. 

Perhaps the most outstanding work in the philosophy of space and time was 

carried out by Reichenbach shortly after the reign of positivism over philosophy of 

science. Reichenbach shared the tenets of conventionalism and positivism, and 

provided a successful mixture of them. Unlike Poincaré, he did not believe that the 

choice of a particular geometry is purely conventional to describe spatial relations.  

However, similar to Poincaré, he thought that there is also a conventional ingredient 

in geometry, and it is the way congruence is defined. The geometry of the physical 

 
33 Hilbert thought that geometry is devoid of a particular content; according to his view, geometry is 
nothing but a system of relations between primitives that are not yet defined. In his Foundations of 
Geometry, showed that the constructive procedures deemed as necessary by Kant are just auxiliary 
tools and therewith not a necessary condition for proving any result in Euclidean geometry. Hilbert 
argued that it is because of the deficiency of the axiomatic structure of the Euclidean geometry that 
the geometers had to recur to diagrams and visible figures. In a rigorously established axiomatic 
system, there would be no need for any figure for Hilbert. 



 81 

space can be determined only after the conventional definition of congruence is given; 

once the congruence is defined, the problem of the geometric character of space 

becomes an empirical problem. To define congruence, a physical object must be 

coordinated to the concept of unit length, this is called a metrical coordinative 

definition (Reichenbach, 1958, p. 15). Definitions in physics are different than that of 

mathematics, for in the former, the definiens is a physical object that do the job of 

defining the corresponding concept whereas in the latter, the definiens is generally 

another set of concepts that aim to define the target concept. The standard meter in 

Paris is coordinated to the concept unit length. This is a great example of a metrical 

coordinative definition. The completion of our coordinative definition of congruence 

requires the comparison of two unit lengths at different locations. Once the unit length 

is physically defined, what remains to be done is to define how the rod should behave 

when it is transported from one region to another. The definition of a rigid body is then 

predicated on the definition of the behavior of our measuring rod during its transport. 

The question that needs to be asked at this point is this: would not it suffice to consider 

our factual observations made distinctly at different places to conclude that the same 

rod is congruent to itself in different places? Reichenbach answers this question 

negatively; we cannot conclude from observed facts that two rods are congruent to one 

another at different places; to assume that they are always equal in length would only 

be an additional convention. But he also states that this conventional definition can be 

empirically verified through comparing the length of the rods measured at different 

places. This is why, Reichenbach stated that "one can say that the factual relations 

holding for a local comparisons of rods, though they do not require the definition of 

congruence in terms of transported rods, make this definition admissible". 

(Reichenbach, 1958. P. 17) In Poincaré’s sphere-world gedanken, it was shown that 
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the same rod turned out to be self-congruent across transportation, for there were no 

noticeable change in its shape during its transport. However, the comparison of the 

measurement of certain ratios (such as π) has shown that the shape of the rod must 

have been altered during its transport. This is why we have to make, prior to the 

observations, a metrical coordinative definition; and this is why, for Reichenbach, the 

definition of congruence is “not a matter of cognition, but a matter of definition.” 

(Reichenbach, 1958. P. 17).  

The aim of a coordinative definition of congruence is to eliminate universal 

and differential forces, and establish the possibility of empirically determining the 

geometry of the physical space. Universal forces are forces which affect all materials 

in the same way. Going back to Poincaré’s sphere-world, the uniform increase in the 

temperature is an effect produced by a universal force. Each body, in that sphere-

world, is affected by the temperature equally, and this was expressed by each body 

having the same coefficient of dilatation. The local comparison of the lengths of the 

transported rods in sphere-world were not noticeable, this is why Reichenbach stated 

that it is “fundamentally impossible to detect changes that were caused by universal 

forces.” (Reichenbach, 1958, p. 16) A coordinative definition of congruence aims to 

eliminate universal forces, this is called, by Rudolf Carnap, the principle of the 

elimination of the universal forces. (Reichenbach, 1958, p. vii) This is the exact place 

where Reichenbach criticizes Poincaré's conventionalism; for Reichenbach, there is a 

disturbing element of arbitrariness in our choice of a particular geometrical structure 

in Poincaré's conventionalism, and he wanted to eliminate that point of arbitrariness 

by introducing his principle of the elimination of the universal forces. Once the 

universal forces are not admitted, a unique geometrical system can be chosen to 

describe our observations. Carnap says: “if this principle is accepted, the arbitrariness 
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in the choice of o a measuring procedure is avoided and the question of the geometrical 

structure of physical space has a unique answer.” (Reichenbach, 1958, p. vii) 

Differential forces, on the other hand, are forces which does not affect every material 

in the same way; different materials respond differently to differential forces. These 

forces also must be eliminated to reach the idea of rigid body. For it corrects the minute 

differences in each body produced by various internal and external forces. Through 

the elimination of the differential forces, we no longer consider those minute 

deformations in bodies as a change in the geometrical structure of geometry. If we do 

not eliminate differential forces, then we would have as many geometries as there are 

bodies which reacts differently to same forces (such as heat). This would unnecessarily 

overcomplicate the task of the physicists, so by definition, all differential forces are 

set to zero. 

In conclusion, the determination of the geometry of the physical world depends on 

the coordinative definition of congruence, until then, the physical geometry is 

indeterminate. “The geometry of the physical space is not an immediate result of 

experience, but depends on the choice of coordinative definition of congruence.” 

(Reichenbach, 1958, p.19) The criteria for selecting the most adequate definition of 

congruence is the same criteria that Poincaré embraced; simplicity, and convenience. 

However, Reichenbach argues that the scientist will not always select the theory which 

involves the simplest geometry, but which involves overall the simplest structure. This 

is what Einstein did in his GRT, he chose the simplest coordinative definition of 

congruence, not the simplest geometry to describe the relations between phenomena. 

 Reichenbach’s own unique conventionality thesis implies that one is free to 

choose whatever geometrical structure one wishes to describe the physical space if 

universal forces are admitted. This analysis directly lead us to the relativity of 
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geometry. Going back to sphere-world experiment again, the same set of observed 

relations can be explained in two different ways Let G0 = Euclidean Geometry, G1 = 

Non-Euclidean Geometry, F = Universal Forces that causes materials to shrink or 

expand. We can either say that the geometry of the sphere-world is Euclidean and there 

are universal forces which affects all the materials in it (G0 + F), or we can say that the 

geometry of the sphere-world is non-Euclidean and there are no universal forces in it 

(G1).  

 The relativity of geometry made Reichenbach renounce the Kantian thesis that 

the Euclidean geometry is synthetic a-priori. He did not believe that the Euclidean 

geometry is epistemologically prior to other geometries. However, it is possible to 

retain Euclidean geometry in every scenario, all we have to do is to choose between 

the set of possible coordinative definitions of congruence, the one which includes the 

Euclidean geometry. He listed the reasons which predisposes us to cling onto the 

Euclidean geometry in every possible scenario. I entitle these reasons as visual 

preferability and local soundness34.  

Notwithstanding the success of these criticisms of Poincaré and Reichenbach, 

and how they rendered Kant’s philosophy of geometry obsolete, there were other 

group of philosophers; P. F. Strawson and Gottlob Frege being important 

representatives, who tried to rescue Kant’s philosophy from these death-blows. 

Strawson’s thesis was centered on the view that even though Kant’s philosophy of 

geometry cannot truly describe the space described by physics, it still necessarily and 

universally holds for the space of human visualization and for local space. In essence, 

 
34 By local soundness, I mean the soundness and the validity of the geometry within a confined 
region of the entire universe. 
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he narrowed down the scope of Kant’s theory of geometry to encompass only the 

visual and local space.  

To begin with, it must be noted that Strawson seemed to have endorsed the 

existence of the physical space. He clearly stated that we have a conception of physical 

space in his Bounds of Sense. He also went further and claimed that the space talked 

about by Kant in The Metaphysical Exposition of Space is actually the physical space. 

He wrote: 

I have already remarked that the space declared to be "essentially one" can only 

be understood to be physical space, the space in which there stand, mutually 

related, public physical bodies conceived of by us as objects distinct from our 

perceptions of them. 
 

 He also affirmed that the geometry studied by the astronomers and physicists were 

different than the Euclidean geometry. His following words suggests that he was aware 

of the discrepancy between the local and global properties of space:  

The testing of Euclidean geometry by observation and measurement shows its 

theorems to be verified with an acceptable degree of accuracy for extents of 

space less than those which astrophysics is concerned; but for astrophysics 

itself, a different physical geometry, inconsistent with Euclidean, is found to 

accommodate observation and measurement (Strawson, 1966, p. 286) 

 

The Euclidean geometry holds true in small areas. The curvature of the space cannot 

be detected within these small areas, therefore the deviation from Euclidean space 

cannot be detected in small areas. The necessary corrections that must be made to make 

possible the transition from the Euclidean and non-Euclidean geometry also lie within 

the errors of observation, thus they are not realizable.   

In addition to the postulated dichotomy between mathematical geometry and 

physical geometry by positivists, he postulated the existence of another kind of 

geometry, which he calls phenomenal geometry, which is distinct from physical 

geometry, and known a-priori. The phenomenal geometry is the geometry of the visual 
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images. “The visual imagination cannot supply us with physical figures, but it can 

supply us with phenomenal figures” said Strawson. (Strawson, 1966, p. 282). Strawson 

said that this third option was completely overlooked by positivists. He wrote:  

What we have had to notice is that there is a third way, different from either of 

these, which is also possible and which the positivist view neglects […] 

Euclidean geometry may also be interpreted as a body of unfalsifiable 

propositions about phenomenal straight lines, circles, etc. (Strawson, 1966, p. 

286) 

 

Strawson said that we can never “see” or “picture” two straight lines between two 

points. If there are two lines between two points, at least one of them has to be curved. 

Since in non-Euclidean geometry, two straight lines can be drawn between two points 

(specifically, in Riemannian geometry), then it seems that we can form Euclidean but 

not non-Euclidean pictures. In short, Strawson’s phenomenal geometry strived for 

accommodating Kant’s theory of geometry with the advancements in physics and 

mathematics. A geometry is phenomenally true only insofar as it can be interpreted by 

virtue of phenomenal figures. This is why the Euclidean geometry is necessarily and 

universally true; for every geometric concept is interpreted according to the 

phenomenal items that corresponds to those concepts. The postulates of the 

phenomenal geometry are phenomenally analytic (Strawson, 1966, p. 286), that is to 

say, they are true in virtue of the meanings attached to the concepts that they contain, 

and those meanings are themselves phenomenal, or visual. To give an example, 

whenever I think of the concept of straight line, the phenomenal item, the picture of a 

straight line, is analytically contained in it. So there is a necessary identity relation 

between the concept and the picture which makes my phenomenal interpretation of the 

given concept necessarily true. 

 To what extent Strawson’s modification of Kant’s theory of geometry can said 

to be successful? There are many gaps that needs to be filled in Strawson’s account. It 
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must not go unnoticed that Strawson did not said anything about the tri-partite relation 

between the phenomenal geometry, the physical geometry, and the mathematical 

geometry. Reichenbach tackles the issue of visual a-priori in his The Philosophy of 

Space and Time (1958). The following words brilliantly summarizes Reichenbach’s 

take on the issue of visual a-priori:  

The theory contends that an innate property of the human mind, the ability of 

visualization, demands that we adhere to Euclidean geometry. In the same way 

as a certain self-evidence compels us to believe the laws of arithmetic, a visual 

self-evidence compels us to believe in the validity of Euclidean geometry. It 
can be shown that this self-evidence is not based on logical grounds. Since 

mathematics furnishes a proof that the construction of non-Euclidean 

geometries does not lead to contradictions, no logical self-evidence can be 

claimed for Euclidean geometry, This is the reason why the self-evidence of 

Euclidean geometry has sometimes been derived, in Kantian fashion, from the 

human ability of visualization conceived as a source of knowledge. 

(Reichenbach, 1958, p. 32) 

 

Reichenbach states that our subjective preference for Euclidean geometry stems from 

the epistemological function of visualization (Reichenbach, 1958, p. 34), which is a 

function of utmost importance in terms of the psychological and pedagogical utility 

that it brings. But this, for Reichenbach, does not violate the principle of the relativity 

of geometry, for every geometry which can be mapped onto one another must be 

treated epistemologically on par with each other35. Because of the epistemological 

 
35 Reichenbach states that as long as two spaces are topologically equivalent, the mapping can be 
done. One cannot, however, map a toroidal space or a spherical space to Euclidean geometry without 
modifying the law of causality accordingly. In that scenario, an observer who is actually moving on the 
surface of a torus would periodically confront the same set of impressions after covering certain 
amount of distance. This happens because the observer goes through the same regions over and over 
again due to the fact that the constant positive curvature of toroidal and spherical spaces forms loops. 
If the observer wants to retain the Euclidean geometry, he must change, along with the laws of physics, 
the law of causality. For that space seems to display a causal anomaly which is completely at odds 
with the classical (Kantian) conception of causality according to Reichenbach. So, a Kantian would be 
having a very hard time explaining the causal relations on that space, for certain regions which are 
separated by a certain distance would display identical events when the classical conception of 
causality is preferred. A Kantian’s overall system would be in the form of G0 + F + A, where ‘A’ refers 
to a newly introduced principle which goes by the name of the pre-established harmony. This pre-
established harmony aims to explain “the instantaneous coupling of distant events.” (Reichenbach, 
1958, p. 65) 
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function of visualization, we generally prefer the Euclidean geometry by setting the 

geometry to Euclidean, and then, according to our observations and experiments, 

introduce the existence of universal forces. So our overall system, if we stick with the 

Euclidean geometry, will always be in the form of G0 + F; in which F = 0 or F ≠ 0, 

depending on the results we obtain from experiments and observation. 

 Is it true that we can only visualize the Euclidean geometry? If the answer 

provided to this question is negative, then Strawson’s attempts to rescue Kant’s 

philosophy of geometry inevitably fails. Can human beings visualize non-Euclidean 

geometries? To recall what was written in the chapter where the views of Helmholtz 

and Poincaré are discussed, the answer that they have provided to this question seems 

to be positive; both of them thought that our visual impressions would change in 

different environments where bodies succeed one another according to different laws. 

This, in a sense, would compel us to adopt a different geometry, which would in turn 

compel us to associate different images with different geometric concepts. But they 

did not tackle the issue of visualization in a great detail. Reichenbach attempts to 

provide more satisfactory answers than his predecessors with regard to the possibility 

of visualizing non-Euclidean geometries. To do this, he begins by determining the 

properties of the visual space. 

 Visualization is “the reproduction of the particular object in the form of image” 

(Reichenbach, 1958, p. 38). The attainment of the precision of the image requires more 

effort on part of the subject. So Reichenbach seems to divide the ability to produce an 

image into distinct levels. When, for example, we attempt to visualize a particular 

triangle, or any other geometric object, a blurred image somehow emerges in our mind. 

This image lack the vividness and particular details. Reichenbach calls these images 

schematic images (Reichenbach, 1958, p. 38). The schematic images lack particular 
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details and exact metrical properties, but have general properties that belong to the 

object. The exact length of the sides of a triangle, or the angle between its vertices, 

cannot apprehended precisely in the imagination. Nonetheless, we never fail to 

apprehend the number of its sides. The former stage is capable of representing the 

topological properties36 but not the metrical properties of the figures, that is to say, it 

is able to provide us with a rough sketch of the object but it fails to provide us with the 

exact quantitative relations among the parts of the objects. Reichenbach calls this 

particular function of the imagination which is able to produce schematic images 

image-producing function (Reichenbach, 1958, p. 39).  

 The second stage of the visualization is called the normative function of 

visualization (Reichenbach, 1958, p. 39), and for him, it is the stage which is 

philosophically important. The normative function of visualization is used to make 

clearer the relations between the objects that I imagined in the former stage. Compared 

to the images provided to us by the image-producing function, the normative function 

is able to provide clearer images and is able to correct the drawings we performed in 

our imagination in the first stage. The rough sketch that is generated in the former 

process is transformed into an exact diagram which is capable of representing the 

relations between the images more accurately. When I am asked, for example, to count 

all the diagonals in a pentagon, I need to pay considerable attention to the figure I am 

constructing in my head, since it is not the same thing as counting the sides of a 

 
36 Topological properties of a figure are the properties which do not involve any quantitative measure. 
Poincaré tends to call these properties qualitative properties, and the area of mathematics which 
studies these qualitative relations is analysis situs. (Poincaré, 1963, p. 25) The topological relations 
between objects include, adjacency, in-betweenness, connectivity, etc. Poincaré states that topology 
precedes geometry epistemologically, for it is possible to disregard the metric properties of a figure 
and study those qualitative relations, but it is impossible to disregard those qualitative relations and 
study the metrical relations. (Poincaré, 1963, p. 26) 
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triangle. In the rough sketch, which is nothing but the output of the image-producing 

function, certain properties of the image may be wrong, that is to say, I may find the 

number of diagonals that can be drawn inside the pentagon less or more than its true 

value. But when the normative function takes over, the total number of diagonals in a 

pentagon can be apprehended clearly. Even the normative function does able to 

provide us with more exact images, it does not have the power to represent accurately 

the exact metrical relations between objects since measurement has nothing to do with 

our sense of sight. Every measurement is carried out with measuring rods in the 

physical space. 

Reichenbach claims that “Kant’s synthetic a-priori intuition springs from the 

normative function of visualization” (Reichenbach, 1958, p. 39), and that this function 

alone singles out the Euclidean geometry from other geometries. The a-priority of 

visualization is explained as the conformity of the imagination to certain tacit 

conditions when producing an image. These presumed tacit conditions are the norms 

imposed upon the figures that we draw, therefore the normative function, according to 

these presumed tacit conditions, directs and restrains our imagination so as to provide 

images that obey certain visual characteristics. As a consequence, visual 

impossibility/possibility is related to these tacit conditions, and these tacit conditions, 

in turn, are related to the generally preferred topological structure in accordance with 

which our imagination produces images. When we are asked, for example, whether 

there exists a surface with one side, we hastily say “no”. But “every student of a lecture 

on topology has taken a strip of paper, twisted around itself, pasted it together in the 

form of a ring” (Reichenbach, 1958, p. 41) to form a one sided surface. So if we modify 

the underlying topological conditions which we impose upon our scenery of 

imagination as norms, we can turn impossible into possible.  
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 The Euclidean geometry is singled out among alternative geometries in a 

similar fashion. The particular Euclidean objects that we construct in our imagination 

are constructed in a space which has a determinate topological structure; and this 

topological structure act as a norm in producing images. Consider the following 

question: “Do parallel lines diverge?” Offhand, we must say “no”, if we consider the 

surface on which these lines are constructed as flat. But if we change the surface on 

which these two straight lines are constructed, the answer to this question can in fact 

turn out to be positive. There seems to be no necessary relation between the image and 

the concept in Reichenbach’s treatment in contradistinction to the treatment of Kant 

and Strawson. Kant thought that the image is necessarily connected to the concept 

through a schema, and Strawson thought that images are necessarily contained under 

the concepts. But for Reichenbach, the connection between the image and the concept 

is flexible and guided by certain tacit conditions which can be modified. These tacit 

topological conditions, which act as a norm in producing an image, are implicitly 

presumed in the conceptual elements of the particular geometrical structure. These 

conceptual elements are the postulates, definitions and axioms. What we are doing is 

developing a function which is habituated to associate certain images and rules of 

construction with the conceptual skeleton of the geometry that we are practicing. In 

support of this view, Reichenbach wrote:  

The merit of visualization consists only in the fact that it translates the logical 

compulsion of Euclidean geometry into a visual compulsion. The normative 

function of visualization is revealed as a correlate of the logical compulsion 

and achieves the same results by means of the elements furnished by the image-

producing function as the logical inference does by means of the conceptual 

elements of thought. (Reichenbach, 1958, p. 42) 

 

Geometrical practice seems to be essentially logical for Reichenbach, a view which is 

not shared by Poincaré. The diagrams are useful in aiding us to carry out the proof 
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which is essentially logical in nature. The normative function of the visualization is a 

function whereby we associate images with logical concepts; this in turn help us to 

complete the proof through using diagrams.  

Even though Poincaré and Reichenbach did not agree on the content of 

geometry, they agreed on the possibility of the association of different images with 

different concepts, which go against the central doctrine of Kant’s theory of geometry. 

For them, non-Euclidean geometries are as equally plausible as the Euclidean 

geometry. For Poincaré, different adaptive conditions would compel the organism to 

adopt a different geometry. Similarly, for Reichenbach, visualization of the Euclidean 

geometry is a result of a biological habit (Reichenbach, 1958, p. 82), and he believed 

that we can gradually break this habit. This habit of ours resulted from our everyday 

experience of the behavior of solid bodies. If the solid bodies behaved differently, we 

would be able to strain the normative function of visualization to be able to adopt a 

new way of imagining and visualizing geometric relations. In brief, what is actually 

needed is an emancipation from the congruence relations that belong to our native 

geometry. If we were immersed in a non-Euclidean environment, we would at first 

resisted to redefine the coordinative definition of congruence and interpret those 

changes as an actual change in the shape of an object. But after a while, we would no 

longer perceive those changes as a change in the shape of an object, but rather as a 

change in our perspective. Reichenbach states that “the moment we no longer see any 

change in the transported object, we have accomplished a visual adjustment. 

(Reichenbach, 1958, p. 54) 

 In the light of these discussions, Reichenbach rejects the view that there exists 

a visualization which is static and not changing according to different environmental 

conditions that produces different visual sensations in an organism. It cannot be the 
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case that there existed a pure form of visualization which is necessarily Euclidean as 

claimed by Kant. The visualization of the Euclidean space was cultivated as a result 

our observations of rigid rods and light rays. It was cultivated over the course of the 

biological history of our species as a developmental adaptation. This is why he called 

it a biological habit and implicitly stressed the role played by evolution. In fact, similar 

views were shared by Poincaré in his discussions about the possibility of the adaptation 

of different geometries. One of the dominant force that is likely to have shaped 

Poincaré’s conventionalism is the theory of evolution. One of the examples provided 

by Poincaré is centered around the role of adaptation and inheritance in the acquisition 

of the idea of space. In this example, Poincaré raises important questions as to whether 

the origination of the idea of space truly happen on an individual level, or it is a fruit 

which is a result of a long chain of continuation of habitual movements of the members 

of a race and inherited throughout the biological history of the race. The example given 

by Poincaré is displayed as follows: 

It will be seen that though geometry is not an experimental science, it is a 

science born in connexion with experience; that we have created the space it 

studies, but adapting it to the world in which we live. We have chosen the most 

convenient space, but experience guided our choice. As the choice was 

unconscious, it appears to be imposed upon us. Some say that it is imposed by 

experience, and others that we are born with our space ready-made. After the 

preceding considerations, it will be seen what proportion of truth and of error 

there is in these two opinions. In this progressive education which has resulted 

in the construction of space, it is very difficult to determine what the share of 

the individual is and what of the race. To what extent could one of us, 

transported from his birth into an entirely different world, where, for instance, 

there existed bodies displaced in accordance with the laws of motion of non-

Euclidian solids-to what extent, I say, would he be able to give up the ancestral 

space in order to build up an entirely new space? (Poincaré, 1914, pp. 115-116) 

 

Reichenbach rejects the idea that there exists a faculty in us, given completely prior to 

any experience and is the condition of the possibility of generating images. He rejects 

that there is a separation between the form of the image and the content of it. The form, 
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for Reichenbach, is not over and above the content, which is nothing but the displayed 

visual qualities of an object, such as its color or brightness. In support of this, 

Reichenbach wrote “visual forms are not perceived differently from color or 

brightness. They are sense qualities, and the visual character of geometry consists in 

these sense qualities.” (Reichenbach, 1958, p. 84) 
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CHAPTER 6 

 

 

CONCLUSION 

 
 

My thesis aimed to provide an answer whether it is possible to reconcile Kant’s 

theory of geometry with non-Euclidean geometries in the light of the criticisms and 

modifications, a sufficient portion of which was displayed above. And the answer that 

thesis gives to that question is negative; it seems not possible to reconcile Kant’s 

theory of geometry with non-Euclidean geometries. Kant’s theory of geometry cannot 

embody non-Euclidean geometries even if undergoes appropriate modifications. 

Strawson, Frege and others have tried to rescue Kant’s theory of geometry by reducing 

the scope of its validity. They have tried to show that Kant’s theory that geometry is 

synthetic a-priori is still tenable in the face of non-Euclidean geometries, for they 

thought that the Euclidean geometry is still necessarily applicable to our visual space, 

even if it does not explain the structure of the world studied by physicists and scientists. 

This modification, however, did not stand a chance against the criticisms of Helmholtz, 

Poincaré and Reichenbach, for both of them thought that it is possible to visualize 

other geometries in different environments. As a philosopher who did not witness the 

revolutionary turns in logic, mathematics, physics and biology, Kant’s current 

philosophical stance towards the nature of geometry must not be accused of its 

ignorance as to these matters. Had he known the theory of evolution, he might have 

contemplated the possibility of a dynamic and evolving intuition, which is capable of 

adapting itself to the environment. Had he known, similarly, the new logics discovered 



 96 

in the 19th and 20th Century, the discovery of non-Euclidean geometries, etc., he would 

have reconsidered his philosophical stance towards the nature of geometrical 

construction. He simply lack all the valuable information that would have helped him 

to revise his own philosophical position and his transcendental idealism. 

Helmholtz, Poincaré and Reichenbach tried to show that the synthetic a-priori 

nature of geometry is not tenable under these new developments mentioned above. 

They both stressed the importance of the role played by the empirical elements in the 

formation of a geometry; the possibility for a species to develop new biological habits 

in new environments is a great example of it. According to Kant, this cannot be 

possible, for the determination of space cannot be a function of the environment. The 

character of the space is invariant under any different environmental context according 

to Kant. Even though Poincaré and Reichenbach differed in their views as to role 

played our minds in the formation of geometry, they agreed that it nevertheless is one 

of the conditions of the possibility of geometry as a science proper, but not in the sense 

that Kant had thought. Poincaré sought the role played by our minds in the formation 

of geometry in other mental powers that belong to our form of understanding; 

Reichenbach in logic, but what is common in both is that they both reduced the 

normative mental operations carried out in the alleged transcendental imagination to 

psychological operations. This reduction in turn rid the normative constructive 

procedure that takes place in the imagination of its epistemological import. So the 

transcendental idealism of Kant is reduced to mere psychologism, and the normativity 

found in the construction of a geometric entity to a habit developed over time. This is 

why the term ‘intuition’ received very different connotations after Kant in the light of 

these advancements in both pure mathematics, physics and biology. Poincaré, in Janet 

Folina’s words, “attempted to reconceive, or reconfigure intuition” (Folina, 2018, p. 
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165). For Poincaré, intuition become something psychological, it became a faculty 

which enabled us to “to see the end from a far” (Poincaré, 1958, p. 22). It does not and 

cannot provide us with the expected rigor that Kant thought that it provided, it could 

only be seen as a fallible tool of discovery. For Reichenbach, on the other hand, the 

term pure intuition simply means ‘pure visualization’, which is some sort of a 

‘biological habit’, developed as a “result of an adaptation of a psychological capacity 

to the environment.” (Reichenbach, 1958, p.82). The appropriate modifications of the 

term ‘intuition’ is a way of renouncing the thesis that our pure intuition of space 

provides the ground of the necessity and universality of the propositions of geometry. 

This is due to the fact that Kant’s theory of geometry is modally connected to his 

theory of space, and, as was clearly argued in the conclusion part of the second chapter, 

as the pillar geometry falls, so must the pillar of space. I thereby conclude that Kant’s 

overall theory of space and geometry is rendered obsolete in the light of these new 

advancements in sciences and their philosophical consequences. 
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APPENDICES 

 

 

 

A. TURKISH SUMMARY / TÜRKÇE ÖZET 

 

 

Bu tez Öklid-dışı geometrilerin Kant’ın matematik felsefesi ile 

uzlaştırılabilirliğinin mümkünatını konu almıştır. Tezimde Kant’ın geometri 

kuramının Öklid-dışı geometrileri içerecek bir kuram olamadığı ve Kant’ın sistemi 

üzerinde yapılan hiçbir modifikasyonun Öklid-dışı geometriler ile Kant’ın sistemini 

uzlaştırmaya muktedir olmadığı gösterilmeye çalışılmıştır. Uzlaştırma sözcüğünün 

kapsamı, Öklid-dışı geometrilerin varlığının Kant felsefesi için bir tehdit teşkil 

etmemesi ve hem Öklid-dışı geometrilerin hem de Kant’ın geometri kuramının 

birbirlerine sorun teşkil etmeden aynı anda var olabilmelerini içerir. Varılan sonuçları 

temellendirmek amacıyla tezin ilk dört bölümünde Kant’ın geometri kuramı ve bu 

kuramı oluşturmasını gerektirmiş olan tarihsel ve felsefi problemlere detaylı bir 

şekilde değinilmiştir. Dördüncü bölümde Öklid-dışı geometrilerin keşfi ve son 

bölümde Helmholtz, Poincaré ve Reichenbach gibi düşünürlerin eleştrileri ışığında 

Öklid-dışı geometrilerin Kant’ın geometri kuramı üzerindeki etkileri araştırılmıştır.  

Kant için geometri uzayın özelliklerinin sentetik ve a-priori belirlenimidir. 

Geometrik bilgimiz a-priori’dir çünkü deneyimden türetilmiş bir bilgi türü değildir. 

Geometrik bilgimiz sentetiktir çünkü hiçbir kavramsal analiz bize analize tabi olan 

kavrama ilişkin tüm özellikleri veremez. Kant’ tan önce geometrik bilgimizin içeriğine 

ait yaygun görüş onun kavramsal bir etkinlik olduğuna dairdi. Rasyonalist gelenekten 

gelen Leibniz ve Wolff, geometrik önermelerin, o önermeleri oluşturan kavramların 
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analizinin yapılarak gösterildiğini düşünüyorlardı. Bu filozoflar için benim üçgenin 

özelliklerine ilişkin her bilgim üçgen kavramını analiz etmemle ortaya çıkıyordu. Kant 

Öklid’in Elemanlar’ında geçen kanıt prosedürlerini baz alarak geometrik bilginin bu 

tarz salt kavramsal analizle mümkün olamayacağı görüşünü ileri sürmüştür.  

Sözgelimi bir üçgenin iç açılarının toplamının iki dik açıya eşit olduğunu bulmak 

istersek bize verilen üçgen kavramının ötesine gitmemiz gerekir. Biz üçgenin iç 

açılarını bulmak için öncellikle bir üçgen çizerek başlarız. Fakat asla bu figürle sınırlı 

kalmayız. Bize verilen üçgenin tabanını uzatır ve o taban üzerinde toplamları iki dik 

açının toplamını veren bir iç ve bir dış açı yaratırız. Sonra bu dış açıyı kesecek ve dış 

açının komşusu olan iç açının gördüğü kenara paralel olacak şekilde bir düz çizgi daha 

çizeriz. Bu sayede elde ettiğimiz yeni dış açının iç açılardan birine eşit olduğunu 

buluruz. Bu sayede, bir kağıdın üzerinde ya da imgelemimizde oluşturduğumuz ve 

genişlettiğimiz figürler üzerinden akıl yürüterek göstermek istediğimiz önermeyi, yani 

bir üçgenin iç açılarının toplamının iki dik açıya eşit olduğunu göstermiş oluruz. Bu 

bakımdan geometrik bilgimiz sentetik bir bilgidir. Çünkü asla bize ilk başta verile 

üçgen figürü ile sınırlı kalmaz tasımlamamız; biz yeni figürler ve yeni bağıntılar inşa 

ederek göstermek istediğimiz şeyi göstermeye girişiriz. Geometri bu şekilde farklı 

şekillerin uzay görümüz içindeki sentezi ile olanaklı olan bir bilimdir. 

Geometriye ilişkin sententik a-priori bilgimizin olanaklılığının koşulu uzayın 

saf bir görü formu olmasından kaynaklanır. Uzay ve zaman Kant için arı birer sezgidir 

ve deneyimimizin olanaklılığının koşuludurlar; objeler bize bu arı görü formları 

olmadan verilemez ve bu arı görü formlarımız objelerin birbirleri ile uzamsal olarak 

ilişkilendirilebilmelerinin ve sıralanabilmelerinin zeminini oluştururlar. Kant öncesi 

düşünürler uzayın zihinden bağımsız olduğu görüşünü benimsemişlerdir. Kant öncesi 

uzayın kökenine ilişkin yapılan felsefi tartışmalar iki başlık altında toplanabilir; uzayın 
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ilişkisel olduğuna dair görüşler ve uzayın mutlak olduğuna dair görüşler. Leibniz 

uzayın aslen şeyler arasındaki ilişkilerden olduğu görüşünü savunmuştur. Newton ise 

uzayın mutlak olduğunu ve şeylerden bağımsız olarak var olduğunu savunmuştur. Her 

iki görüşte Kant için yanlıştı çünkü her iki görüşte uzayın zihinden bağımsız bir 

gerçeklik olduğu kanısına dayanıyordu. Kant ile beraber uzayın ideal ve zihne bağlı 

birer çerçeve olduğu görüşü ortaya çıkmıştır. Kant’a göre uzay düşünen bir bireyden 

bağımsız olarak kendi içinde var olabilen bir nen olamaz. Uzay bizim kendi 

tasarımımızdır. Uzay bir nevi bir gözlüğe benzetilebilir. Biz bu gözlükler olmadan ne 

görüngüler ile temas halinde olamayız; bizi görüngülerle doğrudan ve dolaysız bir 

şekilde temas haline sokan şey bu gözlüklerdir. Biz asla bu gözlükleri çıkarıp 

gerçekliğin kendi içinde nasıl olduğunu da bilemeyeceğiz; çevremizde olan biten 

herşeyi bu gözlüklerde bakarak algılamak zorundayızdır. Kısacası uzay a-priori bir 

çerçevedir ve görüngülerin bize verilebilmesinin olanaklılığının koşulunu oluşturur. 

 Geometri bu saf uzay görümüzün içerisinde belli birtakım inşalar yaparak 

sürdürdüğümüz bir etkinliktir. Saf görü formumuzu çeşitli bir takım inşalarla tahdit 

ederek belli geometrik objeler oluştururuz. Geometrik bilgimizin içeriği bu görü 

formunda inşa edilmiş objeler ve bu objeler arasındaki ilişkileridir. Geometrik bilmin 

önermelerin zorunluluğu ve evrenselliğinin mümkünatının koşulu bu bize a priori 

olarak verilen uzay görümüzdür, eğer bu içinde bir takım inşalar yaptığımız çerçevenin 

kendisi a priori olarak bizlere verilmeseydi geometrik edimimizin kendisi de asla a 

priori olamayacaktı. 

Kant uzay görümüzün belirlenimin zorunlu ve evrensel olarak Öklidyen 

olduğunu savunmuştur. Öklit geometrisinin önermeleri kendilerini akla bir 

zorunlulukla dayatır ve Öklid-dışı geometrilerin kavranabilmesi Kant’ın felsefesi 

içinde mümkün değildir. Kant Öklid-dışı geometrilerin imkansızlığının bu 
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geometrilerin kavramlarının saf görüde inşasının mümkün olmamasından ötürü 

olduğunu tartışır. Söz gelimi birbirlerine paralel ve belirsizce uzatılmış düz birer çizgi 

bir alan kapar önermesi bir imkansızlığa işaret eder. Fakat bu önermenin imkansızlığı 

mantıksal bir imkansızlık değildir; çünkü biz bu önermeyi değili ile birlikte ele 

aldığımızda asla bir çelişki yarattığını göremeyiz. Önermenin değili göz önüne 

alındığında, değilinin de orjinali kadar mantıksal olarak imkanlı olabileceği göz 

önünde bulundurulmalıdır. Hem orjinalinin hem de değilin mantıksal açıdan eş 

düzeyde olanaklı olmalarının sebebi düz çizgi kavramı ne kadar analiz edilirse edilsin, 

birbirine paralel ve belirsizce uzatılan iki düz çizginin kapayabileceği bir figürün 

imkansız olduğunu bize göstermez. Önermede dile getirilen figür, ancak diğer bir 

takım daha primitif olan figürlerin bir araya getirilmesi ile bir sentez sonucu meydana 

getirilebilir. Bu önermede bahsi geçen kavramın imkansızlığı Kant’a göre bu figürü 

oluşturabilecek sentezin imkansızlığı ile alakalıdır. Bu bahsi geçen kavrama duyumda 

(ve ya görüde) bir obje veremememizden kaynaklanır. Sonuç olarak Öklid-dışı 

geometrilerin imkansızlığı mantıksal bir imkansızlığa işaret etmez, görüsel/sezgisel 

bir imkansızlığa işaret eder. 

Helmholtz, Poincaré ve Reichenbach gibi filozoflar, Öklid-dışı geometrilerin 

duyumsal bir içeriğe sahip olabilmesinin imkansız olduğuna dair görüşü reddederler. 

Bu filozoflar farklı fiziksel koşulların içinde bulunduğumuzda, içerisinde 

bulunduğumuz dünyayı ve bu dünyanın içindeki objelerin arasındaki ilişkileri 

betimlemek için farklı geometrik yapıları benimseyeceğimizi söylerler. Yani bu 

ilişkilerin betimi için bir sürü aday geometrik yapı arasından seçilen Öklidyen 

geometrinin asla ve asla diğer geometrik yapılara karşı epistemolojik olarak bir 

üstünküğü ve önceliği var sayılamaz. Özellikle Helmholtz ve Poincaré, oluşturmuş 

oldukları varsayımsal olanaklı dünyaların içerisinde yer alan ve bizimle aynı biyolojik 
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donanıma sahip organizmaların değişen çeşitli görsel ve taktil duyumları 

doğrultusunda benimseyecekleri farklı geometrik yapılar olduğunu tartışırlar. 

Poincaré’nin meşhur küre-uzay deneyi bunun en iyi örneklerinden biridir. Poincaré 

bizden farklı bir dünya tasvir etmemizi ister ve bu dünyanın özelliklerini sıralar. Bu 

dünya bir kürenin içinde hapsolmuştur. Bu dünyada sıcaklık da yeknesak değildir; bu 

kürenin merkezinden uzaklaşmaya başladığımızda sıcaklık düşer. Bu dünyada var olan 

tüm maddelerin sıcaklığa bağlı genleşme katsayısı da bizim dünyamızdaki maddelerin 

aksine aynıdır. Yani her cismin sıcaklık yüzünden boyutlarında meydana gelen 

değişmeler bu kürenin içinde nerede olduklarına göre belirlenecektir. Poincaré ayrıca 

bu dünyada ışığın kırılma endeksinin de bizim dünyamızdan farklı olduğunu, ve ışığın 

düz bir yol değil eğimli bir yol izlediğini ekler. Bu dünya Poincaré için düşünülmesi 

imkansız olan bir uzay değildir. Bu uzay düşünülebilir, çünkü herhangi bir mantıksal 

çelişmeden muhaftır. Bu uzayı oluşturan bahsi geçmiş özelliklerin hiçbiri birbiri ile 

çelişir değildir. Poincaré’ yi Kant’tan ayıran düşüncesi onun bu dünyanın 

algılanmasının da mümkün olduğunu söylemesinde yatar. Poincaré’ ye göre bu 

dünyada yaşayan bize benzer canlıların da geometrik bilgisinin olacağını, ve bu 

geometrik bilginin bizimkinden farklı olacağını savunmuştur. Bu küre-dünyada bu 

canlıların gözlemleyeceği ilişkiler Öklit geometrisi ile açıklanmaktansa hiperbolik 

geometri kullanılarak açıklanacaktır Poincaré’ye göre. Eğer bi Bu dünyayı bir gün biz 

ziyaret etseydik, başta herşeyi Öklit geometrisi kullanarak açıklamay çalışacaktık. 

Fakat zamanla bu küre-dünyada edindiğimiz yeni taktil ve görsel izlenimler ışığında 

geometrik sistemimizi değiştirecek ve gözlemlediğimiz ilişkileri farklı geometrik 

yapılar kullanarak açıklamaya girişecektik. Özet olarak bu üç filozof, Kant’ın aksine, 

geometrik önermelerin sentetik a-priori olduğu fikrini reddeder, çünkü geometrik 

kavramlarla eşleştireceğimiz imgeler veya objeler tamamen deneyimlerimiz ışığında 
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belirlenir. Biz düz çizgi kavramını bugün Öklit geometrisin buyurduğu şekilde 

tanımlıyorsak bu deneyimi açıklayıcılığı bakımdan en uygun geometrik yapının 

Öklidyen geometri olmasından kaynaklanır. Farklı fiziksel dış koşullar düz çizgi 

kavramını nasıl tanımlayacağımız konusunda bize farklı şekilde kılavuzluk edebilirler.   

Her ne kadar Helmholtz ve Poincaré’nin geometrinin kaynağına ilişkin 

görüşleri birbirlerinden farklı olsa da, mütabık oldukları görüş geometrinin 

önermelerinin asla a priori bilinemeyeceği ve deneyimin bu önermelerin 

bilinebilmesinde bir payının olduğudur. Helmholtz geometrik bilgimizin tamamen 

empirik olduğunu savunmuştur. Fakat Poincaré geometrik bilgimizi mümkün kılan ön 

koşulların uzlaşımsal karakteri üzerinde durmuştur. Poincaré için geometrik önermeler 

uzlaşımsaldır; çünkü biz geometri yapmaya başlamadan bir takım uzlaşımlar hakkında 

mütabık oluruz. Uzlaşımlar gizlenmiş tanımlardır ve Öklit geometrisi bu uzlaşımlarla 

doludur. Bir örnek verecek olursak, Öklit Geometrisi’nde önermelerin neredeyse hepsi 

kongrüans ilkesi üzerinde temellenir. Kongrüans ilkesi iki cismin birbirlerine eşit 

olması için uzayda üst üste denk getirilebilmesi gerektiğini söyler. Poincaré için 

kongrüans ilkesi uzlaşımsal bir ilkedir ve geometrinin temelinde bu ilke vardır. Bu ilke 

bir ölçüde deneyimden türetilir. Bunun sebebi doğada herhangi iki nokta arasında 

hareket ederken şekil değiştirmeyen ve izlenimlerini vücudumuzun karşılıklı bir 

hareketiyle düzeltebildiğimiz katı cisimlerin var olmasıdır. Öklit geometrisinde 

kongrüans ilkesi örtük bir belite işaret eder ve bu belit bu yukarıda bahsedilen 

hareketin mümkünatıdır. Sözgelimi Öklit iki cisim arasındaki denkliği kanıtlamak 

istediğinde bu cisimler uzayda hareket ettirerek üst-üste getirmeye çalışır. Bu kanıtın 

başarılı olması için belli geometrik cisimlerin şekil değiştirmeden hareket edebildiği 

varsayılmalıdır. Fakat bu Öklit geometrisinde açıkça bir belit olarak belirtilmez. Buna 

ancak dolaylı yoldan varılır. Öte yandan her ne kadar doğada bu tarz cisimler 
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gözlemlesekte doğa bize ancak ve ancak aşağı yukarı ilkeler sunabilir. Gerçekten şekil 

değiştirmeden hareket eden cismi aklın bir ürünüdür. Fakat bu düşünce Kant’ın 

düşündüğü gibi saf sezgimizde tasarlayabildiğimiz bir düşünce değildir, anlama 

yetisinin bir ürünüdür.  

Bu bağlamda Poincaré için katı cisimlerin ve ışığın hareketleri konusunda 

önden vermiş olduğumuz bir ön tanım uzlaşımsal olan bir elementtir. Katı cisimlerin 

ve ışık süzmelerinin hareketlerini tanımlayışımız bize hangi geometrik yapının 

gözlemlediğimiz ilişkileri açıklamak için kullanacağını belirlerler. Bu tanım 

gözlemlenen katı cisimler ve ışığın hareketi doğrultusunda değişebilir. Durmadan şekil 

değiştiren cisimlerin içinde ve de yörüngesi düzlemsel olmayan ışık süzmelerinin 

gözlemlenebildiği bölgelerde uzunca süreler yaşamış olsaydık Öklidyen bir düz çizgi 

tanımına ulaşmamız mümkün olmayabilirdi. Deneyim bize hangi tanımı 

kullanacağımız konusunda yardımcı olabilir, ama asla hangi tanımın kesinlikle 

seçileceğine deyin bir şey söyleyemez. Her tanım iş görebilir, fakat bazı tanımlar diğer 

tanımlardan daha kullanışlıdır. Bunun sebebi bazı tanımlar ışığında gözlemlenen 

ilişkileri betimlemek diğer tanımlara kıyasla çok daha kolay ve elverişlidir. Bunun 

sonucunda deneyimin asla ve asla bir geometrik yapının doğru ya da yanlış olduğuna 

dair bir yargıda bulunmamıza bir olanak tanımayacağında şahit oluruz. Poincaré için 

geometrinin önermelerinin uzlaşımsal olması tam da bu demektir; bir geometrik yapı 

diğerinden daha doğru ya da daha yanlış olamaz, ancak daha kullanışlı ve uygun 

olabilir. Bu durumda Öklit geometrisi asla deneyim ışığında yanlışlanamaz. Bir bilim 

adamı gözlemlediği ışık süzmelerinin ve katı cisimlerin düz bir doğrultuda hiç bir 

zaman ilerlemediğini saptarsa yapması gereken şey katı cisimlerin hareketine ilişkin 

yasalar ile optikte ışığın hareketine ilişkin yasaları değiştirip Öklit geometrisini tutmak 
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olacaktır. Geometri ve fizik yasaları bir noktada birbirleri ile karşılıklı sınanma ilişkisi 

içerisindedir.  

Öklit geometrilerinin diğer geometrik yapılara tercih edilmesinin arkasında 

yatan sebepler konusunda Reichenbach kapsamlı bir çalışma yapmıştır. Reichenbach 

Poincaré gibi geometrinin uzlaşımsal bir karakteri olduğunu savunmuştur. Ona göre 

kongrüans ilkesine ilişkin verilen koordinatif tanım, bütün geometrik egzersizimden 

önce gelir. Reichenbach bütün geometrik egzersizin öncelikle bir birimin uzunluğunun 

tanımlanması ile başladığını söyler. İkincil elzem olan tanım bu ilk aşamada 

tanımlanmış birim uzunluğun hareket ederken şekil değiştirmediğini öne süren 

tanımdır. Bu iki tanım yapıldığı anda bir geometrik yapıya işaret eder. Reichenbach, 

Poincaré’ye benzer bir biçimde gözlemlediğimiz ham olguları dilediğimiz geometrik 

yapı ile belirleyebileceğimizi vurgular. Dikkat edilmesi gereken şey deneyimde 

gözlenen olgularla tam örtüşmesi bakımından fiziksel yasaların kullanılan geometrik 

dile bağlı olarak modifiye edilip edilmeyeceğidir. Örnek verecek olursak biz bir takım 

olguları Öklidyen geometri kullanarak modelleyebiliriz, fakat eğer olguları 

açıklayıcılığı bakımından Öklit geometrisi yeterli değil ise, biz fizik yasalarını da 

kurduğumuz sistemin olgularla örtüşmesi bakımından modifiye etmeliyiz. Eğer 

gözlemlediğimiz iki düz çizgi arasındaki mesafe açılıyorsa ve bu olguyu açıklamak 

için Öklit geometrisinde ısrarcı oluyorsak, bu iki düz çizgi arasındaki açılmayı 

evrensel bir kuvvetin varlığından söz ederek açıklamaya girişmeliyiz. 

Reichenbach’ ın kendine mahsus uzlaşımsalcılığı uzayı açıklamada seçilecek 

geometrinin göreli olduğunu vurgular. O da Poincaré ile bu hususta taraf olarak 

geometrik bilgimizin Kant’ın düşündüğü gibi sentetik a-priori olmadığını 

savunmuştur. O da tıpkı Poincaré gibi bir geometrik yapının bir diğerinden 

epistemolojik anlamda daha üstün olamayacağını söyler. Fakat Poincaré’ nin aksine 
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bizim neden Öklidyen geometriyi diğer geometrik sistemlere tercih ettiğimiz üzerinde 

kapsamlı açıklamalar yapmaya çalışır. Öklit geometrisi lokal ve 

deneyimleyebildiğimiz uzayı açıklayıcılığı bakımından en makul geometri 

olduğundan ve görselleştirilebilirliği bakımından özel bir epistemolojik fonksiyonu 

olduğundan diğer geometrilere tercih edilir. Poincaré’ nin aksine Reichenbach, 

Einstein’in Öklid-dışı geometrileri başarılı bir şekilde aktüel deneyimimizdeki ham 

olguları açıklamak için kullandığına tanık olmuş bir bilim filozofudur. Bu bir nevi ona 

uzayın geometrik karakterinin tam anlamı ile uzlaşımsal olmadığını ve birim uzunluğa 

ve onun hareketlerine ilişkin uzlaşımsal tanımlar yapıldıktan sonra uzayın geometrik 

karakterinin ampirik olarak belirlenebileceği görüşünü kazandırmıştır. Reichenbach, 

Einstein’in kuramının astronomik ölçekte zuhur eden ilişkilerin açıklanmasında 

kullanıldığını biliyordu. Fakat Öklit geometrisinin Öklid-dışı geometrilerle olan 

farkının insanların gündelik hayatta gözlemlediği objelerin ölçeğinde 

saptanamayacağının da farkındaydı. Bu bakımdan fiziksel uzamın lokal ve global 

özelliklerini betimlemede seçilecek geometrik yapılar birbirinden farklı olabilirdi. Bu 

bakımdan Reichenbach Öklit geometrisinin bu gündelik hayat ölçeğinde tercih 

edilebileceğini savunmuştur.   

Reichenbach ikincil olarak Öklit geometrisinin görselleştirilebilirliği 

bakımdan özel bir epistemolojik fonksiyonu olduğunu söyler. Sözgelimi biz 

imgelemimizde düz bir çizgi tasarlamaya çalıştığımızda genellikle Öklidyen 

niteliklere sahip bir düz çizgi tasarlarız. Çoğu Kant sonrası filozof Kant’ın geometri 

kuramını kurtarmak için Öklit geometrisinin zorunlu ve evrensel olarak görsel 

uzayımız için geçerli olduğunu savunmuştur. Bu filozoflardan biri olan Strawson’a 

göre bizim görsel uzayımız, yani imgelemimizde tasvir ettiğimiz objeler ve onların 

ilişkileri, zorunlu ve evrensel olarak Öklidyen niteliklere sahiptir. Strawson görsel 
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uzayımızı konu alan geometriye fenomenal geometri ismini verir. Fenomenal 

geometrinin objeleri fenomenal imgelerdir. Bu imajların geometrik karakteri zorunlu 

ve evrensel olarak Öklidyen geometri ile betimlenebilir. Strawson Öklidyen 

geometrisinde bahsi geçen kavramlara tekabül eden imajların zorunlu olarak o 

kavramlarla birlikte düşünüldüğünü söylemiştir. Biz düz çizgi kavramını 

düşündüğümüzde o kavramın altında zorunlu olarak Öklidyen niteliklere sahip bir düz 

çizgi tasvir ederiz. İmaj zorunlu olarak kavramda içerilir. Bu bağldamda Strawson 

bizim asla ve asla Öklid-dışı bir düz çizgiyi imgelemimizde tasvir edemeyeceğimizden 

bahseder. Bu ona göre imkansızdır çünkü biz Öklid-dışı bir düz çizgi 

düşündüğümüzde ister istemez bir eğri düşünürüz. Yani Öklid-dışı geometrilerde var 

olan kavramların imgelemdeki tasviri daimi olarak Öklid geometrisinin birtakım başka 

kavramları ile eşleştirdiğimiz imgeler vasıtası ile mümkün olabilir.  

Reichenbach için görsel uzayımız asla ve asla a-priori belirlenemez. O görsel 

uzayımızın Öklidyen olmasının epistemolojik bir fonksiyonu olduğundan bahseder 

fakat Strawson gibi ileri giderek görsel uzayımızın geometrik belirleniminin zorunlu 

ve evrensel olarak Öklidyen olduğunu ileri sürmez. Reichenbach imgelemimizde bir 

kavrama tekabül eden imajı canlandırdığımızda ya da çizdiğimizde bir takım düzgüsel 

ve örtük koşulların etkisi altında kaldığımızdan bahseder. Biz bir düz çizgi 

düşündüğümüzde ister istemez o düz çizginin çizildiği yüzeyin düz olduğunu hayal 

ederiz. O yüzey çeşitli deformasyonlara uğradığında artık üzerine çizilen düz çizgilerin 

birbirleri ile girdikleri çeşitli geometrik ilişkilerin aynı kalması beklenemez. Bu bir 

bakıma şunu ifade eder: biz geometrik edimimizi imgelemimizde gerçekleştirirken 

daima bir takım topolojik bir yapıyı örtük olarak benimseriz. Bu topolojik yapı bir 

değişime uğradığında ister istemez geometrik edimimizin içeriğini oluşturan imgeler 

ve onların arasındaki ilişkiler de değişime uğrar. Örnek vermek gerekirse topoloji dersi 
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almış bir matematik öğrencisine tek yüzü olan bir yüzeyin mümkün olup olmadığı 

sorulsa öğrenci buna olumlu bir cevap verecektir. O bir yüzeyi alacak ve onun bir 

ucunu 180 derece bükerek diğer ucu ile birleştirecek ve tek yüzeyi olan bir yüzey inşa 

edecektir. İki paralel çizginin kesişip kesişmediğine ilişkin soru da bu türden bir 

sorudur. Bu soruya verilecek cevap önceden benimsenmiş topolojik bir yapıya göre 

şekillenir. Yüzeyleri düzlemsel olarak tasvir eden bir kimse bu soruya olumsuz yanıt 

verecektir. Yüzeyleri küresel olarak tasvir eden bir kimse de bu soruya olumlu yanıt 

verecektir. 

Reichenbach’a göre bu düzgüsel ve örtük koşulların kökeni biyolojik bir 

alışkanlığa dayanır. Bu bir nevi psikolojik, fizyolojik ve evrimsel bir sürecin nihai 

sonucudur. Bu sebeple bizim gibi organizmalar, kendi biyolojik ve evrimsel tarihleri 

hesaba katıldığında, bu tarz düzgüsel ve örtük koşulların içinde evrilmiş ve belirli bir 

topolojik yapıyı görselleştirme edimi için örtük olarak benimsemiş olsa da, bu 

süregelen alışkanlığı bozabilirler. Bu benimsenmiş ve düzgüsel olarak kendini bize 

dayatan topolojik yapı, biz farklı bir kongrüans ilişkisine adapte olmaya 

başladığımızda değişime uğrar. Biz kendi biyolojik ve evrimsel tarihimiz boyunca 

belirli bir kongrüans tanımına adapte olan ve bu tanım üzerinden düzgüsel bir topolojik 

yapıyı örtük olarak benimsemiş bir organizmayızdır. Farklı çevresel koşullar bize 

farklı kongrüans ilişkilerini seçmeye, ve bununla beraber farklı topolojik yapıları 

imgelemimizdeki imajları tasvir etmek için benimsememize sebep olur. Poincaré’ de 

Reichenbach gibi benzer bir evrimsel ve biyolojik argüman sunmuştur. O da geometrik 

bilgimizin kökenlerine ilişkin yaptığı sorgulamada atasal deneyimlerimizin önemi 

üzerinde durur. Poincaré gerçek anlamda uzaya ilişkin tasarımlarımızın sadece bireyi 

deneyimlerine indirgenip indirgenemeyeceğini sorgulamıştır. Uzay fikrinin oluşumu 

ve bunun sonucu olarak sürdürdüğümüz geometrik edimlerimiz ya bireyin sadece 
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kendi hayatında deneyimledikleri ile doğrudan ilişkilidir ya da o bireyin bir üyesi 

olduğu ırka mensup bir bilgi çeşididir. Sonuç olarak Poincaré belli bir geometrik 

sistemin diğer sistemlere tercih edilmesinde rol oynayabilecek faktörlerin başında 

adaptasyon ve inheritans olabileceği üzerinde durur, fakat bu argümanları için eksiksiz 

bir temel aramaya girişmez. 

Özetle bahsi Helmholtz, Poincaré ve Reichenbach geometrik bilgimizin asla 

ve asla Kant’ın öne sürdüğü gibi sentetik a priori olmadığını savunmuştur. Bunu 

göstermek için fizyolojimizin, çevresel koşullarımızın, biyolojik tarihimizin ve 

psikolojimizin oynadığı rolün altını çizmişlerdir. Bu filozoflar Kant’ın aksine 

Darwin’in evrim kuramına, Öklid-dışı geometrilerin keşfine ve bu Öklid-dışı 

geometrilerin Einstein tarafından başarılı bir şekilde aktüel dünyamızdaki uzamsal 

ilişkileri betimlemede kullanılmasına tanık olmuşlardır. Bütün bu farklı alanlardaki 

gelişmeler hesaba katıldığında Kant’ın geometriye ilişkin kuramı kaçınılmaz olarak 

bu filozoflar tarafından yoğunca eleştrilmiş ve geometrik bilgimizin kökenine ilişkin 

alternatif olasılıklar ortaya sürülmüştür. Kant’ın geometrik bilgimizin zorunluluğunu 

ve evrenselliğinin olanaklılığının koşulunu açıklamak için ortaya sürdüğü arı görü 

formları bu filozoflarca artık kabul edilmemiştir. Uzay’ın bize içkin olduğu görüşü 

zaman içinde geometrik bilgimizin zorunluluğu ve evrenselliği sorgulanmaya 

başlandığında reddedilmeye başlanmıştır 
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